【题目】如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα=,在顶端E点测得A的仰角为45°,AE=140m
(1)求两楼之间的距离CD;
(2)求发射塔AB的高度.
科目:初中数学 来源: 题型:
【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求这条抛物线对应的函数表达式;
(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,抛物线与轴交于两点,过点的直线与该抛物线交于点,点是该抛物线上不与重合的动点,过点作轴于,交直线于点.
(1)求抛物线的解析式;
(2)若,当时,求点坐标;
(3)当(2)中直线为时,是否存在实数,使与相似?若存在请求出的值;若不存在,请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有六个矩形水池环绕,矩形的内侧边所在直线恰好围成正六边形ABCDEF,正六边形的边长为4米.要从水源点P处向各水池铺设供水管道,这些管道的总长度最短是_____米.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的对角线经过原点,与交于点轴于点,点D的坐标为反比例函数的图象恰好经过两点.
(1)求的值及所在直线的表达式;
(2)求证:.
(3)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠D=∠B,补充下列条件之一,不一定能判定△ABC和△ADE相似的是( )
A.∠ACB=∠AEDB.∠CAE=∠BADC.∠BED=∠EACD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com