精英家教网 > 初中数学 > 题目详情
若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是(  )
A.B.C.D.
根据题意,x+2y=100,
所以,y=-
1
2
x+50,
根据三角形的三边关系,x>y-y=0,
x<y+y=2y,
所以,x+x<100,
解得x<50,
所以,y与x的函数关系式为y=-
1
2
x+50(0<x<50),
纵观各选项,只有C选项符合.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形.
(1)求点D的坐标;
(2)直线y=2x+6向右平移6个单位后,在该直线上,是否存在点D,使△APD是等腰直角三角形?若存在,请求出这些点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.
方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:
(1)方案一中每个包装盒的价格是多少元?
(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1、y2与x的函数关系式.
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=kx+b经过点(0,-2)和点(-2,0).
(1)求直线的解析式;
(2)在图中画出直线,并观察y>1时,x的取值范围(直接写答案);
(3)求此直线与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一位旅行者在早晨8时出发到乡村,第一个小时走了5千米,然后他上坡,1个小时只走了3千米,以后就休息30分钟;休息后平均每小时走4千米,在中午12时到达乡村.根据右图回答问题:
(1)旅行者9时、10时、10时30分、11时离开城市的距离为多少?
(2)他停下来休息时离开城市的距离是多少?
(3)乡村离城市有多少路程?
(4)旅行者离开城市6千米、10千米、12千米、14千米的时间分别为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A的坐标为(1,3),点B的坐标为(3,1).
(1)写出一个图象经过A,B两点的函数表达式;
(2)指出该函数的两个性质.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数y=kx+b的图象与x轴交于点A(-1,0),且经过点B(3,3),O为坐标原点,则sin∠BAO的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某城市的一种出租车,当行驶路小于3km时,车费都为10元;大于或等于3km但小于15km时,超过3km的那部分路程每千米收费1.5元;大于或等于15km时,超过15km的那部分每千米收费2.5元.乘客为了估算应付的车费,需要一个简单的计费公式.假设路途上没有停车等候,
(1)写出车费y(元)与行驶路程x(km)之间的函数关系式;
(2)画出这个函数图象;
(3)当行驶路程为14km时,车费是多少?当行驶路程为35km时,车费又是多少?

查看答案和解析>>

同步练习册答案