精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a≠0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是-
32

(1)确定抛物线的解析式;
(2)说出抛物线的开口方向,对称轴和顶点坐标.
分析:(1)已知抛物线与x轴的两交点的横坐标分别是-1和3,设抛物线解析式的交点式y=a(x+1)(x-3),再将点(0,-
3
2
)代入求a即可;
(2)将抛物线解析式配方为顶点式,可确定抛物线的开口方向,对称轴及顶点坐标.
解答:解:(1)依题意设抛物线解析式为y=a(x+1)(x-3),
将点(0,-
3
2
)代入,得-3a=-
3
2
,解得a=
1
2

故y=
1
2
(x+1)(x-3),即y=
1
2
x2-x-
3
2

(2)∵y=
1
2
x2-x-
3
2
=
1
2
(x-1)2-2

∴抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,-2).
点评:本题考查了待定系数法求二次函数解析式的一般方法,需要根据条件合理地设解析式,同时考查了解析式的变形及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案