分析 (1)设一次函数解析式为y=kx+b,把A坐标代入求出b的值,把B与C坐标代入求出k的值,即可确定出解析式;
(2)对于一次函数解析式,令y=0求出x的值,确定出D坐标,进而表示出OD的长,P纵坐标为OD边上的高,利用三角形面积公式表示出S与x的关系式即可;
(3)令S=1,求出x的值即可.
解答 解:(1)设一次函数解析式为y=kx+b,
把A(0,-3)代入得:b=-3,
把B与C坐标代入得:$\left\{\begin{array}{l}{k-3=a}\\{ak-3=1}\end{array}\right.$,
解得:k=4或k=-1,
∵函数值y随着x的值增大而增大,
∴k=4,
则一次函数解析式为y=4x-3;
函数图象如图:
(2)对于一次函数y=4x-3,令y=0,得到x=$\frac{3}{4}$,即D($\frac{3}{4}$,0),
则S△POD=$\frac{1}{2}$×$\frac{3}{4}$(4x-3)=$\frac{3}{2}$x-$\frac{9}{8}$(x>0);
(3)令S=1,得到$\frac{3}{2}$x-$\frac{9}{8}$=1,
解得:x=$\frac{17}{12}$.
点评 此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
成绩(分) | 6 | 7 | 8 | 9 | 10 |
人数 | 正 一 | 正 正 一 | 正 正 | 正 |
A. | 9,8 | B. | 9,8.5 | C. | 8,8 | D. | 8,8.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com