精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,M为BC中点,DM⊥ME,MD交AB于D,ME交AC于E.求证:BD+CE>DE.
分析:延长DM到F,使MF=DM,连接EF、CF,易证△BDM≌△CFM(SAS),所以BD=CF,易证△DEM≌△FEM(SAS),所以DE=FE,在△ECF中,EC+FC>EF,即可得解.
解答:证明:如图,延长DM到F,使MF=DM,连接EF、CF,
∵BM=CM,∠BMD=∠CMF,
∴△BDM≌△CFM(SAS),
∴BD=CF,
∵DM⊥ME,DM=FM,ME是公共边,
∴△DEM≌△FEM(SAS),
∴DE=FE,
在△ECF中,EC+FC>EF,
∴BD+EC>DE.
点评:此题主要考查全等三角形的判定和性质以及三角形三边之间的关系,作辅助线构成全等三角形是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案