精英家教网 > 初中数学 > 题目详情
已知y关于x的函数:y=(k-2)x2-2(k-1)x+k+1中满足k≤3.
(1)求证:此函数图象与x轴总有交点;
(2)当关于z的方程有增根时,求上述函数图象与x轴的交点坐标.
【答案】分析:(1)本题可将函数分成一次函数和二次函数两种情况讨论:当k=2时,函数为一次函数,与x轴一定有交点;
当k≠2时,函数为二次函数,让y=0,根据根与系数的关系以及k的取值范围我们可判断出此时的方程是否有解,如果有解,则必与x轴有交点.
(2)这个方程有增根,那么增根必为z=3,让方程去分母后,将z=3代入化简而得的整式方程中求出k的值,就可得出函数的关系式,有了函数关系式就能求出其与x轴的交点了.
解答:解:(1)当k=2时,函数为y=-2x+3,图象与x轴有交点.
当k≠2时,△=4(k-1)2-4(k-2)(k+1)=-4k+12;
当k≤3时,△≥0,此时抛物线与x轴有交点.
因此,k≤3时,y关于x的函数y=(k-2)x2-2(k-1)x+k+1的图象与x轴总有交点.

(2)关于z的方程去分母得:z-2=k+2z-6,k=4-z.
由于原分式方程有增根,其根必为z=3.这时k=1
这时函数为y=-x2+2.它与x轴的交点是(-,0)和(,0).
点评:本题综合考查了分式方程,二次函数与一元二次方程的综合应用,要注意(2)中要学会利用增根来求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的函数y=k(x+1)和y=-
k
x
(k≠0)它们在同一坐标系中的大致图象是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知关于x的函数同时满足下列三个条件:
①函数的图象不经过第二象限;
②当x<2时,对应的函数值y<0;
③当x<2时,函数值y随x的增大而增大.
你认为符合要求的函数的解析式可以是:
y=-x2+4x-4
(写出一个即可,答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的函数y=(2m-1)x2+3x+m图象与坐标轴只有2个公共点,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的函数y=mx2+(m-1)x-2m+1.
(1)当m为何值时,函数图象与x轴只有一个交点,并求出交点坐标;
(2)当m为何值时,函数图象与x轴相交于A、B两点,且AB=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知y关于x的函数关系式为y=(a-1)x2-2ax+a+2.
(1)上述函数的图象与x轴只有一个交点时,求交点的坐标;
(2)当此函数是二次函数时,设顶点为(m,n),求n关于m的函数关系式;
(3)y关于x的函数是二次函数,抛物线与x轴有两个交点时,顶点为(m,n),
1
m
+
1
n
=3
,求值a的.

查看答案和解析>>

同步练习册答案