精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧
AB
上,OM⊥DE于点M.试求图中阴影部分的面积.(结果保留π)
分析:由图知,阴影部分的面积等于扇形OAB的面积减去等腰直角三角形OAB的面积再减去矩形PDEQ的面积.求得相关的线段后即可得解.
解答:精英家教网解:∵∠AOB=90°,
∴扇形AOB的面积=
1
4
πr2=4π
.(1分)
∵C、F分别为OA、OB的中点,OA=OB=4,
∴OC=OF=2,CF=2
2
.(2分)
∴CF平行且等于
1
2
AB.
∴AB=2CF=4
2
.(3分)
∴CF∥AB∥DE,
∴CD⊥AB,FE⊥AB.
∵OM⊥DE,
∴OM⊥AB.
∵△AON为等腰直角三角形,且OA=4,
∴ON=2
2
.连接OD,
DM=ME=
2

OM=
OD2-OM2
=
14

∴MN=PD=QE=
14
-2
2
.(4分)
∴矩形PDEQ的面积=2
2
×(
14
-2
2
)=4
7
-8.(5分)
∴S阴影=S扇形AOB-S△AOB-S矩形PDEQ
=4π-
1
2
OA?OB-
4
7
-8

=4π-
1
2
OA?OB-
4
7
-8

=4π-8-(4
7
-8

=4π-4
7
.(6分)
点评:本题关键是求矩形PDEQ的长PQ和宽QE,要利用到等腰直角三角形的性质,矩形的性质,三角形中位线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O精英家教网于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC精英家教网上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为8的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=2
15

(1)求证:
AM
EM
=
MC
MB

(2)求EM的长;
(3)求sin∠EOB的值.

查看答案和解析>>

同步练习册答案