精英家教网 > 初中数学 > 题目详情

(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.

(1)点      (填M或N)能到达终点;

(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

 

【答案】

(1)M;(2),当时,S的值最大;(3)存在,点M的坐标为(1,0)或(2,0),理由见试题解析.

【解析】

试题分析:(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点.

(2)经过t秒时可得NB=y,OM﹣2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值.

(3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值.

试题解析:(1)点M.

(2)经过秒时,NB=,OM=,则CN=,AM=,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=,∴PQ=

∴S△AMQ=AM•PQ==.∴,∴,∵,∴当时,S的值最大.

(3)存在.

设经过秒时,NB=,OM=,则CN=,AM=,∴∠BCA=∠MAQ=45°.

①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高,∴PQ是底边MA的中线,∴PQ=AP=MA,

,∴,∴点M的坐标为(1,0).

②若∠QMA=90°,此时QM与QP重合,∴QM=QP=MA,∴,解得:,∴点M的坐标为(2,0).

考点:二次函数综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源:2011-2012学年九年级第二次模拟考试数学卷 题型:解答题

(本小题满分12分)

如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:

1.(1)写出A点的坐标;

2.(2)求反比例函数的解析式;

3.(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分12分)

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.(1)问:始终与△AGC相似的三角形有               

2.(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.(3)问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长。(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。阅读后回答下列问题:

1.(1)方案(I)是否可行?为什么?

2.(2)方案(II)是否切实可行?为什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否测得(或求出)AB的长?理由是         ,若ED=m,则AB=      

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏GSJY八年级第二次学情调研考试数学卷 题型:解答题

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为        . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

科目:初中数学 来源:2014届湖北省孝感市七年级下学期期中考试数学卷 题型:解答题

.(本小题满分12分)

如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

 

查看答案和解析>>

同步练习册答案