【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:△ABE≌△CDF.
【答案】证明:□ABCD中,AB=CD,∠A=∠C, AB∥CD ∴∠ABD=∠CDB
∵∠ABE=∠ABD,∠CDF=∠CDB ∴∠ABE=∠CDF
在△ABE与△CDF中
∴△ABE≌△CDF.
【解析】试题分析:首先根据角平分线性质与平行线性质证明∠ABD=∠CDB,再根据平行四边形性质证出CD=AB,∠A=∠C,可利用ASA定理判定△ABE≌△CDF.
试题解析:
在平行四边形ABCD中,AB=CD,∠A=∠C.
∵AB∥CD,∴∠ABD=∠CDB
∵BE平分∠ABD,DF平分∠CDB,
∴∠ABE=∠ABD,∠CDF=∠CDB.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
∵∠A=∠C,AB=CD,∠ABE=∠CDF,
∴△ABE≌△CDF.
科目:初中数学 来源: 题型:
【题目】如图, 在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,在正方形ABCD中,AB=1, 是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的动点(点E与点A,D不重合),过E作所在圆的切线,交边DC于点F,G为切点.
(1)求证:EA=EG;
(2)设AE=x,FC=y,求y关于x的函数关系式,并直接写出x的取值范围;
(3)如图2所示,将△DEF沿直线EF翻折后得△D1EF,连接AD1,D1D,试探索:当点E运动到何处时,△AD1D与△ED1F相似?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC,AB于E,F,连接BE,CF,分别交DF,DE于点N,M,连接MN.试判断△DMN的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是( )
A.8
B.10
C.20
D.32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com