精英家教网 > 初中数学 > 题目详情
如图,在四边形中,是对角线的中点,E、 F分别是的中点,则的度数是         的度数是         
18
∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,
∴FP,PE分别是△CDB与△DAB的中位线,
∴PF=BC,PE=AD,
∵AD=BC,
∴PF=PE,
故△EPF是等腰三角形.
∵∠PEF=18°,
∴∠PEF=∠PFE=18°
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

满足下列条件的图形中
①对角线长为6和8的菱形;  ②边长为6和8的平行四边形;  
③边长为6和8的矩形;      ④边长为7的正方形;
面积最大的是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a-2b)米的正方形,(0<b<),
(1)分别求出七(2)、七(3)班的清洁区的面积;
(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中错误的是 (   )
A.两条对角线互相平分的四边形是平行四边形;
B.两条对角线相等的四边形是矩形;
C.两条对角线互相垂直的矩形是正方形;
D.两条对角线相等的菱形是正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,ABCD中,∠B+∠D=,则∠A=     度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an=  ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABC中,D是BC上任意一点,DE//AC,DF//AB.若AD平分∠BAC.试判断四边形AEDF的形状,并给出证明.(本题6分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,延长正方形ACBD的一边BC至点E,使得CE=AC,连接AE则∠E=     。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图(3)所示,矩形纸片中,,现将其沿对折,使得点与点重合,则长为(   )
 

查看答案和解析>>

同步练习册答案