精英家教网 > 初中数学 > 题目详情

【题目】如图,∠ACB=90°,AC=BCBECEADCEAD=4BE=1.

1)求证:△ADC≌△CEB

2)求的长。

【答案】1)见解析(23

【解析】

1)根据垂直定义求出∠ADC=BEC=ACB,根据等式性质求出∠ACD=CBE,根据AAS证出△ADC≌△CEB;(2)由(1)推出CD=BECE=AD,即可求解.

1)证明:∵BECE, ADCE,

∴∠ADC=BEC=90°,

∴∠CBE+ECB=90°.

∵∠ACB=90°,

∴∠ACD+ECB=90°,

∴∠ACD=CBE.

AC=BC,

∴△ADC≌△CEB.

2)∵△ADC≌△CEB,

CD=BE=1CE=AD=4,

DE=CE-DC=4-1=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在探究两个三角形满足两边和其中一边的对角对应相等(“SSA”)是否能判定两个三角形全等时,我们设计不同情形进行探究:

1)例如,当∠B 是锐角时,如图 BC=EF,∠B=∠E,在射线 EM 上有点 D,使 DF=AC,用尺规画出符合条件的点 D,则△ABC 和△DEF 的关系是( )

A.全等 B. 不全等 C. 不一定全等

我们进一步发现如果能确定这两个三角形的形状,那么SSA是成立的.

2)例如,已知:如图,在锐角△ABC 和锐角△DEF 中,AC=DFBC=EF,∠B=E. 求证:△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l

(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.

(2)画出△DEF关于直线l对称的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,点B的坐标为( )

A. (0,0) B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=17cmAC=10cm边上的高AD=8cm,则边的长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABC中,∠A90°ABACDBC边上的中点,EF分别是ABAC上的点,且∠EDF90°,求证:BEAF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点在一条直线上,,过分别作,若.

1)求证:.

2)若将的边沿方向移动得到图②,其他条件不变,(1)中结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应党的文化自信号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:

(1)直接写出a的值,a=   ,并把频数分布直方图补充完整.

(2)求扇形B的圆心角度数.

(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学问题:计算(其中m,n都是正整数,且m2,n1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算

1次分割,把正方形的面积二等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续二等分,…;

n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

探究二:计算++++

1次分割,把正方形的面积三等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续三等分,…;

n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

两边同除以2,得++++=

探究三:计算++++

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算++++

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式:_________

所以, ++++=________

拓广应用:计算 ++++

查看答案和解析>>

同步练习册答案