精英家教网 > 初中数学 > 题目详情

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)命题的题设为两组对边分别相等的四边形,结论是是平行四边形”,即可得到结论

(2)连接BD,利用SSS定理证明ABD≌△CDB可得ADB=∠DBC,∠ABD=∠CDB,进而可得ABCDADCB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;

(3)把命题两组对边分别相等的四边形是平行四边形的题设和结论对换可得平行四边形两组对边分别相等.

试题解析:解:(1)已知:如图1,在四边形ABCD中,BC=ADAB=CD

求证:四边形ABCD是平行四边形.

(2)证明:连接BD

ABDCDB,∵AB=CDAD=BCBD=DB,∴ABDCDB(SSS),

∴∠ADB=∠DBC,∠ABD=∠CDB,∴ABCDADCB,∴四边形ABCD是平行四边形;

(3)用文字叙述所证命题的逆命题为:

平行四边形两组对边分别相等

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.

(1)如图1,直接写出∠A和∠C之间的数量关系________

(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;

(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.

1)这个几何体模型的名称是

2)如图2是根据abh的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.

3)若h=a+b,且ab满足a2+b2﹣a﹣6b+10=0,求该几何体的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm),若铁钉总长度为6cm),则a的取值范围是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB分别切⊙O于A、B,连接PO、AB相交于D,C是⊙O上一点,∠C=60°.
(1)求∠APB的大小;
(2)若PO=20cm,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择. 方案一:每千克种子价格为4元,无论购买多少均不打折;
方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.
(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数关系式;
(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ= 时,P、Q两点间的距离 (用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点,···,则点的坐标是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2.

(1)该班共有多少名学生?

(2)请在图1中将“乒乓球”部分的图形补充完整;

(3)若全年级共有1200名学生,估计全年级参加乒乓球活动的学生有多少名?

(4)求出扇形统计图中表示“足球”的扇形的圆心角度数.

查看答案和解析>>

同步练习册答案