精英家教网 > 初中数学 > 题目详情
如图,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且点P(-1,-2)为双曲线上的一点,过P作PA垂直x轴于点A:
(1)写出正比例函数和反比例函数的关系式;
(2)若点Q为直线MO上一动点(不与点M、O重合),过点Q作QB⊥y轴于点B,是否存在点Q,使△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标;如果不存在,请说明理由;
(3)在(2)的条件下,在平面内找一点C,使以O、P、C、Q为顶点的四边形为平行四边形,请直接写出C点坐标.
(1)设反比例函数的解析式为y=
k
x
(k≠0),正比例函数的解析式为y=k′x.
∵正比例函数和反比例函数的图象都经过点M(-2,-1),
∴-1=
k
-2
,-1=-2k′,
∴k=2,k′=
1
2

∴正比例函数的解析式为y=
1
2
x,反比例函数的解析式为y=
2
x


(2)当点Q在直线MO上运动时,假设在直线MO上存在这样的点Q(x,
1
2
x),使得△OBQ与△OAP面积相等,则B(0,
1
2
x).
∵S△OBQ=S△OAP
1
2
•x×
1
2
x=
1
2
×2×1,
解得x=±2.
当x=2时,
1
2
x=1;
当x=-2时,
1
2
x=-1.
故在直线MO上存在这样的点Q(2,1)或(-2,-1),使得△OBQ与△OAP面积相等.

(3)如图所示:当四边形OPCQ是平行四边形,
∵P(-1,-2),Q(2,1),
∴C点坐标为;(1,-1),
当四边形OPQ′C′是平行四边形,
∵P(-1,-2),Q′(-2,-1),
∴C′点坐标为;(-1,1),
综上所述:使以O、P、C、Q为顶点的四边形为平行四边形,C点坐标为:(-1,1),(1,-1).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知反比例函数的解析式为y=-
8
x
,那么当自变量x<-4时,函数值y的取值范围是(  )
A.y>2B.y<2C.0<y<2D.y<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一次函数y=x+m与反比例函数y=
6
x
的图象的一个交点为P(a,2).

(1)求a及m的值;
(2)求一次函数的图象与两坐标轴的交点的坐标;
(3)设(2)中的一次函数的图象与x轴的交点为A,与y轴的交点为B,若在x轴上有一点E,使得以E,O,P为顶点的三角形与△AOB的面积相等,试写出所有符合上述条件的点E的坐标.(只需回答出点E的坐标,不必写出求解过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,?ABCD的顶点A、B的坐标分别是A(-1,0),B(0,-2),顶点C、D在双曲线y=
k
x
上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,则反比例函数的解析式是(  )
A.y=
6
x
B.y=-
6
x
C.y=
3
2x
D.y=-
3
2x

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,函数y=
k
x
(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知双曲线y=
k
x
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=-
2
x
(x<0)
经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴负半轴的夹角,ABx轴,将△ABC沿AC翻折后得到△AB′C,B′点落在OA上,则四边形OABC的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.若函数y=
k
x
(x<0)的图象过C点,则k=______.

查看答案和解析>>

同步练习册答案