分析 利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可.
解答 解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴Rt△ABG≌Rt△AFG(HL),
∴BG=GF,
∵E是边CD的中点,
∴DE=CE=3,
设BG=x,则CG=6-x,GE=x+3,
∵GE2=CG2+CE2
∴(x+3)2=(6-x)2+32,
解得 x=2
∴BG=2.
故答案为:2.
点评 此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{13}$ | B. | $\sqrt{13}$-2 | C. | $\sqrt{13}$-3 | D. | 4-$\sqrt{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2-(x-y+2z)=x2-x+y+2z | B. | x-[-y+(-3x+1)]=x+y+3x-1 | ||
C. | 3x-[5x-(x-1)]=3x-5x-x+1 | D. | (x-1)-(x2-2)=x-1-x2-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com