精英家教网 > 初中数学 > 题目详情
16、如图,A、D是⊙O上的两个点,BC是直径,若∠D=36°,则∠OAC的度数是
54°
分析:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=72°,而△AOC中,AO=CO,所以∠OAC=∠OCA,而180°-∠AOC=108°,所以∠OAC=54°.
解答:解:∵∠D=36°,
∴∠AOC=2∠D=72°,
∴∠OAC=(180°-∠AOC)÷2=108°÷2=54°.
故答案为:54°.
点评:本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解.特别地,当有直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC等于(  )
A、65°B、35°C、70°D、55°

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,E、F是AB上的两点,AE=BF,AC∥BD,∠C=∠D.求证:CF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于(  )
A、
3
2
B、
2
2
C、
2
3
3
D、
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=
90
90
°;
②若⊙O的半径是1,AB=
2
,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F是AB上的两点,AC=BD,AC∥BD,∠C=∠D;
求证:AE=FB.

查看答案和解析>>

同步练习册答案