【题目】如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为或时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).
【答案】(﹣1,0);(1,0)
【解析】解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB相似,即∠BOC应该与∠BOA=90°对应,
①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(﹣4,0);
②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(﹣1,0)或者(1,0).
故答案可以是:(﹣1,0);(1,0).
因为点C在x轴上,所以点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB相似,即∠BOC应该与∠BOA=90°对应,①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(﹣4,0);②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(﹣1,0)或者(1,0).
科目:初中数学 来源: 题型:
【题目】将一副直角三角板如图放置,使GM与AB在同一直线上,其中点M在AB的中点处,MN与AC交于点E,∠BAC=30°,若AC=9cm,则EM的长为( )
A. 2.5cm B. 3cm C. 4cm D. 4.5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )
A.2:5 B.14:25 C.16:25 D.4:21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级共有300名学生,为了解该年级学生在,两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.
收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75
整理、描述数据
项目的频数分布表
分组 | 划记 | 频数 |
— | 1 | |
2 | ||
2 | ||
| 8 | |
5 |
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计项目和项目成绩都是优秀的人数最多为________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学学生会为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如图所示的两幅不完整的统计图.(把圆分成面积相等的两部分)请根据图中提供的信息,解答下列问题:
(1)参加调查的人数共有_______人;在扇形图中,表示“其它球类”的扇形的圆心角为______度;
(2)将条形图补充完整;
(3)若该校有名学生,估计喜欢“乒乓球”的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“为了安全,请勿超速”,如图所示是一条已经建成并通车的公路,且该公路的某直线路段MN上限速17m/s,为了检测来往车辆是否超速,交警在MN旁设立了观测点C.若某次从观测点C测得一汽车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200m.
(1)求观测点C到公路MN的距离;
(2)请你判断该汽车是否超速?(参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB∥DE,AC∥DF,AC=DF下列条件中,不能判断△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com