【题目】已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )
A. ∠1=∠2 B. ∠A =∠2 C. △ABC≌△CED D. ∠A与∠D互为余角
【答案】A
【解析】试题分析:A选项:因为AC⊥CD,∠ACD=90°,所以可得:∠1+∠2=90°,所以A选项错误;
B选项:因为AC⊥CD,∠ACD=90°,所以可得:∠1+∠2=90°,又因为∠B=90°,所以∠1+∠A=90°,根据同角的余角相等可得:∠A=∠2,故B选项正确;
C选项:因为AC⊥CD,∠ACD=90°,所以可得:∠1+∠2=90°,又因为∠B=90°,所以∠1+∠A=90°,根据同角的余角相等可得:∠A=∠2,又因为AC=CD,∠B=∠E,根据AAS可证△ABC≌△CED,故C选项正确;
D选项:因为AC⊥CD,∠ACD=90°,所以可得:∠1+∠2=90°,又因为∠B=90°,所以∠1+∠A=90°,根据同角的余角相等可得:∠A=∠2,因为∠E=90°,所以∠D+∠2=90°,所以∠A+∠D=90°,所以∠A和∠D互为余角,故D选项正确.
故应选A.
科目:初中数学 来源: 题型:
【题目】分别画出下列各多边形的对角线,并观察图形完成下列问题:
(1)试写出用n边形的边数n表示对角线总条数S的式子: .
(2)从十五边形的一个顶点可以引出 条对角线,十五边形共有 条对角线:
(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在Rt△ABC中,∠BAC=90 o,AC=2AB,点D是AC的中点,将一块锐角为45 o的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC。试猜想线段BE和EC的数量及位置关系,并证明你的猜想。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目.以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,统计表中的值为 ,统计图中的值为 ;
(3)在统计图中,类所对应扇形圆心角的度数为 ;
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱欣慰节目的学生数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化简,得y2+2y﹣4=0,
故所求方程为y2+2y﹣4=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为 ;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com