精英家教网 > 初中数学 > 题目详情
5.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.
(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=$\sqrt{10}$,求OE的长度.

分析 (1)连接AD,由D为弧AB的中点,得到AD=BD,根据圆周角定理即可得到结论;
(2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD,根据相似三角形的性质得到DE:AC=BE:BC,即可得到结论.
(3)连接CO,根据线段垂直平分线的判定定理得到OE垂直平分BC,由三角形的中位线到现在得到OF=$\frac{1}{2}$AC,根据直角三角形的性质得到EF=$\frac{1}{2}$BC,由勾股定理即可得到结论.

解答 (1)解:连接AD,
∵D为弧AB的中点,
∴AD=BD,
∵AB为直径,
∴∠ADB=90°,
∴∠DAB=∠DBA=45°,
∴∠DCB=∠DAB=45°;

(2)证明:∵BE⊥CD,又∵∠ECB=45°,
∴∠CBE=45°,
∴CE=BE,
∵四边形ACDB是圆O的内接四边形,
∴∠A+∠BDC=180°,
又∵∠BDE+∠BDC=180°,
∴∠A=∠BD,
又∵∠ACB=∠BED=90°,
∴△ABC∽△DBE,
∴DE:AC=BE:BC,
∴DE:BE=AC:BC=1:2,
又∵CE=BE,
∴DE:CE=1:2,
∴D为CE的中点;

(3)解:连接EO,
∵CO=BO,CE=BE,
∴OE垂直平分BC,
∴F为BC中点,
又∵O为AB中点,
∴OF为△ABC的中位线,
∴OF=$\frac{1}{2}$AC,
∵∠BEC=90°,EF为中线,
∴EF=$\frac{1}{2}$BC,
在Rt△ACB中,AC2+BC2=AB2
∵AC:BC=1:2,AB=$\sqrt{10}$,
∴AC=$\sqrt{2}$,BC=2$\sqrt{2}$,
∴OE=OF+EF=$\frac{3}{2}$$\sqrt{2}$.

点评 本题考查了圆周角定理,三角形的中位线的性质,勾股定理,相似三角形的判定和性质,熟练掌握各定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.不解方程,利用判别式判断下列方程的根的情况.
(1)4x2+6x+9=0;
(2)y2=y+5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知方程(m-2)x|m|-1+(n+3)${y}^{{n}^{2}-8}$=6是关于x,y的二元一次方程.
(1)求m,n的值;
(2)求x=$\frac{1}{2}$时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知关于二次函数y=x2-(4k+2)x+4k2+3k的图象与x轴有两个交点.
(1)求k的取值范围;
(2)若二次函数与x轴的两个交点坐标为(a,0),(b,0),并满足(a-b)2=2,求k的值,并写出二次函数的表达式;
(3)如图所示,由(2)所得的抛物线与一次函数y=-3x+$\frac{7}{2}$的图象相交于点C、点D,求三角形CDP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在方程组$\left\{\begin{array}{l}{x=2y-t}\\{2x+y=t-3}\end{array}\right.$中,已知y>9,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读理解:
提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
当AP=$\frac{1}{2}$AD时(如图2):
∵AP=$\frac{1}{2}$AD,△ABP和△ABD的高相等,
∴S△ABP=$\frac{1}{2}$S△ABD
∵PD=AD-AP=$\frac{1}{2}$AD,△CDP和△CDA的高相等
∴S△CDP=$\frac{1}{2}$S△CDA
∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-$\frac{1}{2}$S△ABD-$\frac{1}{2}$S△CDA
=S四边形ABCD-$\frac{1}{2}$ (S四边形ABCD-S△DBC)-$\frac{1}{2}$ (S四边形ABCD-S△ABC)=$\frac{1}{2}$S△DBC+$\frac{1}{2}$S△ABC
(1)当AP=$\frac{1}{3}$AD时,探求S△PBC与S△ABC和S△DBC之间的关系式并证明;
(2)当AP=$\frac{1}{6}$AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=$\frac{1}{6}$S△DBC+$\frac{5}{6}$S△ABC
(3)一般地,当AP=$\frac{1}{n}$AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系为:S△PBC=$\frac{1}{n}$S△DBC+$\frac{n-1}{n}$S△ABC
(4)当AP=$\frac{b}{a}$AD(0≤$\frac{b}{a}$≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=$\frac{b}{a}$S△DBC+$\frac{a-b}{a}$S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知关于x的方程(m+2)x2-2(m-1)x+m+1=0有两个不相等的实数根,并且一次项系数不小于零,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解三元一次方程组$\left\{\begin{array}{l}{x+2y+z=7}\\{2x-y+3z=7}\\{3x+y+2z=18}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,以A(1,1)为顶点的抛物线y=x2-2x+c与y轴交于点C,正方形ABCD的边CD与y轴重合,点P为第一象限内抛物线上的点且不与点A重合,过点P作PF∥x轴交y轴于点F,PE∥y轴交x轴于点E.设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为L.
(1)c的值为2.
(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.
(3)当m<2时,求L与m之间的函数关系式.
(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.

查看答案和解析>>

同步练习册答案