精英家教网 > 初中数学 > 题目详情
13.计算:2$\sqrt{32}$-3$\sqrt{\frac{1}{2}}$+(2$\sqrt{2}$-1)2

分析 先把各二次根式化简为最简二次根式,然后利用完全平方公式计算,最后合并即可.

解答 解:原式=8$\sqrt{2}$-$\frac{3\sqrt{2}}{2}$+8-4$\sqrt{2}$+1
=$\frac{5\sqrt{2}}{2}$+9.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.二次函数y=-x2+mx+n的图象经过点A(-1,4),B(1,0),y=-$\frac{1}{2}$x+b经过点B,且与二次函数y=-x2+mx+n交于点D.
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.点P(-1,2)关于原点对称的点P′的坐标是(1,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知直线y=mx-4与坐标轴围成等腰直角三角形,则这条直线的解析式为y=x-4或y=-x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若代数式$\frac{2a-3}{3a+2}$的值是$\frac{3}{4}$,则a的值是-30.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若关于x的多项式ax2-abx+b与bx2+abx+2a的和是一个单项式,且ab≠0,则$\frac{a}{b}$的值为-1或-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.一个分数的分母是51,经过约分后得$\frac{2}{3}$,则这个分数的分子是34.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知一次函数y=-(k-1)x+5随着x的增大,y的值也在增大,那么k的取值范围是k<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)用直尺和圆规作出如图三角形ABC的外接圆⊙O (不写作法,保留作图痕迹).
(2)若在△ABC中,AC=4米,∠ABC=45°,试求⊙O半径长.

查看答案和解析>>

同步练习册答案