精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=
 
°.
分析:首先根据直角三角形的全等的判定证明Rt△ABF≌Rt△CDE,进而得到∠B=∠D.再根据直角三角形的性质(在直角三角形中,两个锐角互余)得出∠A的值.
解答:解:在Rt△ABF与Rt△CDE中,
AB=CD
BF=DE

∴Rt△ABF≌Rt△CDE(HL),
∴∠B=∠D
∵∠D=60°
∴∠B=60°
∠A=90°-60°=30°
故答案为30°
点评:本题考查了直角三角形的性质与全等的判定.同学们一定掌握全等三角形的全等判定及全等三角形的性质,做到灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案