精英家教网 > 初中数学 > 题目详情
如图,在等腰△ABC中AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,OP与AC相交与点M,则下列结论:
①点O是△PBC的外心;②△MAO∽△MPC;③AC=AO+AP;④S△ABC=
4
5
S四边形AOCP
其中正确的有(  )
分析:①连接OB,根据AD⊥BC,AB=AC,可知AD是CB中垂线,即可证明OB=OC,即可得OB=OC=OP,即可得点O是△PBC的外心;
②易证得△OPC是等边三角形,即可得∠OAM=∠CPM=60°,又由对顶角相等,即可证得△MAO∽△MPC;
③首先在AC上截取AE=PA,易得△APE是等边三角形,继而利用证得△OPA≌△CPE,即可得AC=AO+AP;
④过点C作CH⊥AB于H,易得S△ABC=
1
2
AB•CH,S四边形AOCP=S△ACP+S△AOC=
1
2
AP•CH+
1
2
OA•CD=
1
2
AP•CH+
1
2
OA•CH=
1
2
CH•(AP+OA)=
1
2
CH•AC,即可得S△ABC=S四边形AOCP
解答:解:①连接OB,
∵在等腰△ABC中AB=AC,AD⊥BC,
∴BD=CD,
∴OB=OC,
∵OP=OC,
∴点O是△PBC的外心;
故①正确;
②∵在等腰△ABC中AB=AC,∠BAC=120°,
∴∠ABC=∠ACB=
180°-∠BAC
2
=30°,
∴∠AOC=2∠ABC=60°,
∵OP=OC,
∴△OPC是等边三角形,
∴∠OPC=60°,
∵∠OAM=
1
2
∠BAC=60°,
∴∠OAM=∠CPM,
∵∠AMO=∠CMP,
∴△MAO∽△MPC;
故②正确;
③在AC上截取AE=PA,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
PA=PE 
∠APO=∠CPE 
OP=CP 

∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP;
故③正确;
④过点C作CH⊥AB于H,
∵∠PAC=∠DAC=60°,AD⊥BC,
∴CH=CD,
∴S△ABC=
1
2
AB•CH,S四边形AOCP=S△ACP+S△AOC=
1
2
AP•CH+
1
2
OA•CD=
1
2
AP•CH+
1
2
OA•CH=
1
2
CH•(AP+OA)=
1
2
CH•AC,
∵AB=AC,
∴S△ABC=S四边形AOCP
故④错误.
故选C.
点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的性质以及三角形外接圆的知识.此题综合性很强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案