精英家教网 > 初中数学 > 题目详情
21、已知:在⊙O中,CD平分∠ACB,弦AB、CD相交于点E,连接AD、BD.
(1)写出图中3对相似的三角形(不必证明);
(2)找出图中相等的线段,并说出理由.
分析:(1)据圆周角定理的推论可以得到有关的角相等,根据两个角对应相等可证明三角形相似;
(2)根据圆周角定理的推论得到等弧,再根据等弧对等弦证明.
解答:解:(1)相似三角形有△AEC∽△DEB、△AED∽△CEB、△ACE∽△BCD等;

(2)AD=BD.理由如下:
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴弧AD=弧BD;
∴AD=BD.
点评:本题要能够熟练运用圆周角定理的推论以及等弧对等弦的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:在△ABC中,CD⊥AB于D,且CD2=AD•BD.
求证:△ABC总是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,在△ABC中,CD是中线,CD=
1
2
AB,那么下列判断错误的是(  )
A、∠DAC=∠DCA
B、∠DBC=∠DCB
C、∠ACB=90°
D、∠A=30°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,CD是AB边上的高,∠DEB=∠ACB,∠1+∠2=180°.试判断FG与AB的位置关系,并说明理由.
解:FG⊥AB,理由:
∵∠DEB=∠ACB(已知)
DE∥AC
DE∥AC
(同位角相等,两直线平行)
∴∠1=∠3(
两直线平行,内错角相等
两直线平行,内错角相等

∵∠1+∠2=180°(已知)
∴∠3+∠2=180°(
等量代换
等量代换

FG∥CD
FG∥CD
(同旁内角互补,两直线平行)
∵CD是AB上的高(已知)
∴∠CDA=90°(
三角形高的定义
三角形高的定义

∠FGD
∠FGD
=∠CDA(两直线平行,同位角相等)
∴FG⊥AB(
垂直的定义
垂直的定义

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,在△ABC中,CD是中线,CD=
1
2
AB,那么下列判断错误的是(  )
A.∠DAC=∠DCAB.∠DBC=∠DCBC.∠ACB=90°D.∠A=30°

查看答案和解析>>

同步练习册答案