A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由条件证明△ABD≌△ACE,就可以得到结论;
②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;
③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,进而得出结论;
④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2就可以得出结论.
解答 解:如图:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AD=AE}\\{∠BAD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,∴③正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,∴②正确;
④∵BD⊥CE,
∴BE2=BD2+DE2,
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2,
∵BC2=BD2+CD2,
∴2AB2=BD2+CD2,
∴BD2=2AB2-CD2,
∴BE2=BD2+DE2=2AB2-CD2+2AD2=2(AD2+AB2)-CD2,
∴④正确.
故选D.
点评 本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
科目:初中数学 来源: 题型:选择题
A. | y1<y2<0 | B. | y1>y2>0 | C. | y2>y1>0 | D. | y2<y1<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 小刚的影子比小红的长 | B. | 小刚的影子比小红的影子短 | ||
C. | 小刚跟小红的影子一样长 | D. | 不能够确定谁的影子长 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 北偏西50°方向上的一条射线 | B. | 北偏西40°方向上的一条射线 | ||
C. | 南偏西40°方向上的一条射线 | D. | 南偏西50°方向上的一条射线 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com