精英家教网 > 初中数学 > 题目详情
4.如图,直线AB,CD被EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE.
(1)判定EM与FN之间的关系,并证明你的结论;
(2)由(1)的结论我们可以得到一个命题:
如果两条直线平行,那么内错角的角平分线互相平行.
(3)由此可以探究并得到:
如果两条直线平行,那么同旁内角的角平分线互相垂直.

分析 (1)由∠1+∠2=180°可得出∠1=∠EFD,由“同位角相等,两直线平行”可得出AB∥CD,再由平行线的性质即可得出∠BEF=∠CFE,进而得出∠3=∠4,依据“内错角相等,两直线平行”即可证出AB∥CD;
(2)结合(1)的结论即可得出命题:如果两条直线平行,那么内错角的角平分线互相平行;
(3)根据“两直线平行,同旁内角互补”结合角平分线的性质即可得出命题:如果两条直线平行,那么同旁内角的角平分线互相垂直.

解答 解:(1)EM∥FN.
证明:∵∠1+∠2=180°,∠EFD+∠2=180°,
∴∠1=∠EFD,
∴AB∥CD,
∴∠BEF=∠CFE.
∵EM,FN分别平分∠BEF和∠CFE,
∴∠3=∠4,
∴EM∥FN.
(2)由(1)可知EM∥FN,
∴可得出命题:如果两条直线平行,那么内错角的角平分线互相平行.
故答案为:平行;平行.
(3)由“两直线平行,同旁内角互补”可得出:
如果两条直线平行,那么同旁内角的角平分线互相垂直.
故答案为:平行;垂直.

点评 本题考查了命题与定理、平行线的判定与性质,解题的关键是:(1)依据“内错角相等,两直线平行”证出AB∥CD;(2)根据(1)的结论得出命题;(3)根据“两直线平行,同旁内角互补”结合角平分线的性质得出命题.本题属于基础题,难度不大,解决该题型题目时,根据两直线平行找出相等(或互补)的角是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.已知△ABC的三边长a,b,c满足$\sqrt{a-2}$+|b-2|+(c-2$\sqrt{2}$)2=0,则△ABC一定是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,下列三个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.
从中任选两个作为条件,另一个作为结论,共可编出几道数学题,并选一道数学题进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.感知:如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
(1)∠AEC的度数为120°;
(2)线段AE、BD之间的数量关系为AE=BD.
拓展探究
如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.
解决问题:
如图3,△ABC和△DCE都是等腰三角形,∠ACB=∠DCE=36°,点B、D、E在同一条直线上,则∠EAB+∠ECB=180度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图AB∥ED,BC∥EF,AF=CD,BE交AD于O
(1)求证:△ABC≌△DEF;
(2)求证:EO=BO.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若m•23=26,则m=(  )
A.2B.6C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式中,与(1-a)(-a-1)相等的是(  )
A.a2-1B.a2-2a+1C.a2-2a-1D.a2+1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,△ABC中,AB=15,AC=13,点D是BC上一点,且AD=12,BD=9,点E、F分别是AB、AC的中点,则△DEF的周长是21.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为(  )
A.28B.35C.28或35D.21或28

查看答案和解析>>

同步练习册答案