精英家教网 > 初中数学 > 题目详情
6.解不等式组:$\left\{\begin{array}{l}{2x+3≥x+1}\\{x-1<3}\end{array}\right.$,并把它的解集在数轴上表示出来.

分析 根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.

解答 解:$\left\{\begin{array}{l}{2x+3≥x+1}&{①}\\{x-1<3}&{②}\end{array}\right.$
由不等式①,得x≥-2,
由不等式②,得x<4,
∴原不等式组的解集是-2≤x<4,在数轴上表示如下图所示,

点评 本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD是正方形,E是边AB上一点,连接DE,直线DE绕着点D逆时针旋转90°,交BC的延长线于点F.
(1)如图1,求证:DE=DF;
(2)如图2,连接EF,若D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交AB于点P,求证:E为AP中点;
(3)如图3,在(2)的条件下,连接AC交EF于点G,连接BG,BH,若BG=$\sqrt{5}$,AB=3,求线段PH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)(2-3$\sqrt{3}$)(2+3$\sqrt{3}$)-(3$\sqrt{3}$-2)2
(2)$\sqrt{18}$-$\frac{\sqrt{32}-\sqrt{8}}{\sqrt{2}}$+(-$\sqrt{12}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解不等式(组):
(1)$\frac{x+6}{2}<1-\frac{2x+1}{3}$;        
(2)$\left\{\begin{array}{l}3(x-1)<5x+1\\ 2x-4≤\frac{x-1}{2}\end{array}\right.$,并写出其整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且D点的横坐标为4.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为$\frac{25}{8}$,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,当a=-1时,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,已知点A是反比例函数y=$\frac{{\sqrt{6}}}{x}$在第一象限图象上的一个动点,连接OA,以$\sqrt{3}$OA为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数y=$\frac{k}{x}$的图象上,则k的值为(  )
A.-3$\sqrt{6}$B.3$\sqrt{6}$C.-$\sqrt{6}$D.3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线y=ax2+bx+1经过A(-1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=-1.
解决问题:
①若直线y=3x-1与直线y=mx+2互相垂直,求m的值;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM和弧BC的长分别为(  )
A.2$\sqrt{3}$、$\frac{4π}{3}$B.2$\sqrt{3}$、πC.$\sqrt{3}$、$\frac{2π}{3}$D.2、$\frac{π}{3}$

查看答案和解析>>

同步练习册答案