精英家教网 > 初中数学 > 题目详情

【题目】已知点AOB在一条直线上,将射线OCO点顺时针方向旋转90°后,得到射线OD,在旋转过程中,射线OC始终在直线AB上方,且OE平分∠AOD.约定,无论∠AOD大小如何,OE都看作是由OAOD两边形成的最小角的平分线.

(1)如图,当∠AOC=30°时,∠BOD=_________°;

(2)若射线OF平分∠BOC,求∠EOF的度数.

【答案】(1)60;(2)45°或135°

【解析】

(1)根据平角定义即可得出结论

(2)分两种情况讨论①当OCOD都在直线AB上方时OC在直线AB上方OD在直线AB下方时

(1)∵∠AOC=30°,∠COD=90°,∴∠BOD=180°-∠AOC-∠COD=180°-30°-90°=60°.

(2)分两种情况讨论

①当OCOD都在直线AB上方时如图1.设∠AOC=x则∠BOC=180°-x

∵∠COD=90°,∴∠AOD=90°+x,∠BOD=90°-x

OE平分∠AOD,∴∠EOD=AOD=(90°+x)=45°+0.5x

OF平分∠BOC,∴∠BOF=BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF-∠BOD=(90°-0.5x)-(90°-x)=0.5x,∴∠EOF=∠EOD-∠DOF=(45°+0.5x)-0.5x=45°.

②当OC在直线AB上方OD在直线AB下方时如图2.

设∠AOC=x则∠BOC=180°-x

∵∠COD=90°,∴∠AOD=360°-90°-x=270°-x,∠BOD=180°-∠AOD=180°-(270°-x)=x-90°.

OE平分∠AOD,∴∠EOD=AOD=(270°-x)=135°-0.5x

OF平分∠BOC,∴∠BOF=BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF+∠BOD=(90°-0.5x)+(x-90°)=0.5x,∴∠EOF=∠EOD+∠DOF=(135°-0.5x)+0.5x=135°.

综上所述:∠EOF的度数为45°或135°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,甲、乙、丙三艘轮船从港口O出发,当分别行驶到ABC处时,经测量得,甲船位于港口的北偏东43°45′方向,乙船位于港口的北偏东76°35′方向,丙船位于港口的北偏西43°45′方向.

(1)求BOC的度数;

(2)求AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要108K大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300/张,黑白页50/张;印刷费与印数的关系见表.

印数a (单位:千册)

1≤a<5

5≤a<10

彩色 (单位:元/张)

2.2

2.0

黑白(单位:元/张)

0.7

0.6

(1)直接写出印制这批纪念册的制版费为多少元;

(2)若印制6千册,那么共需多少费用?

(3)如印制x(1≤x<10)千册,所需费用为y元,请写出yx之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给下面命题的说理过程填写依据.

已知:如图,直线ABCD相交于点OEOCD,垂足为OOF平分BOD,对EOFBOC说明理由.

理由:因为AOCBOD( )

BOFBOD( )

所以BOFAOC( )

因为AOC180°BOC( )

所以BOF90°BOC.

因为EOCD( )

所以COE90°( )

因为BOECOEBOC( )

所以BOEBOCCOE.

所以BOEBOC90°( )

因为EOFBOEBOF( )

所以EOF(BOC90°)(90°BOC)

所以EOFBOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个用硬纸板制作的长方体包装盒展开图已知它的底面形状是正方形高为12cm

(1)制作这样的包装盒需要多少平方厘米的硬纸板?

(2)1平方米硬纸板价格为5则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形ABCD,AD∥BC,AD=AB=CD,∠BAD=120°,E是射线CD上的一个动点(与C、D不重合),△ADE绕点A顺时针旋转120°,得到△ABE',连接EE'.

(1)如图1,∠AEE'= °;

(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点EEM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;

(3)如图3,在(2)的条件下,如果CE=2,AE=,ME的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=2x-4

(1)画出函数的图象

(2)判断点A(1,-2),B(2,1)是否在该函数的图象上.

(3)已知点A(-2,b)在该函数图像上,求b值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是______,点B的坐标是______,点C的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)请用两种不同的方法求图b中阴影部分的面积:
方法1: ____ (只列式,不化简)
方法2: ______ (只列式,不化简)
(2)观察图b,写出代数式(m+n2,(m-n2mn之间的等量关系: ______ ;
(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,

则(a-b2= ______ .

查看答案和解析>>

同步练习册答案