【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+C与x轴交于点A(﹣1,0),B(﹣3,0),与y轴交于点C,顶点为D,抛物线的对称轴与x轴的交点为E.
(1)求抛物线的解析式及E点的坐标;
(2)设点P是抛物线对称轴上一点,且∠BPD=∠BCA,求点P的坐标;
(3)点F的坐标为(﹣2,4),若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线OF相切,求点Q的坐标.
【答案】(1)(﹣2,0);(2)(﹣2,2)或(﹣2,﹣2);(3)(﹣2, )或(﹣2,)
【解析】
(1)根据抛物线y=﹣x2+bx+C与x轴交于点A(﹣1,0),B(﹣3,0),利用待定系数法即可求得抛物线的解析式,配方后即可求得点E的坐标;
(2)根据点P是抛物线对称轴上一点,且∠BPD=∠BCA,分情况结合三角函数的知识进行求解即可求得点P的坐标;
(3)根据题意可知点Q到点A的距离,从而可以得到点Q到直线OF的距离,然后根据锐角三角函数即可求得点Q的坐标,从而可以解答本题.
(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(﹣3,0),
∴,解得,
∴抛物线的解析式为y=﹣x2﹣4x﹣3,
∵y=﹣x2﹣4x﹣3=﹣(x+2)2+1,
∴点E的坐标为(﹣2,0);
(2)如图1所示,
∵y=﹣x2﹣4x﹣3,点A(﹣1,0),B(﹣3,0),
∴点C(0,﹣3),
∴AB=(﹣1)﹣(﹣3)=2,AC=,OC=3,BC=3,
作AF⊥BC于点F,
则,
即,
解得,AF=,
∴BF=,
∴CF=2,
∴tan∠ACB=,
设点P1的坐标为(﹣2,p),
∵∠BPD=∠BCA,
∴tan∠BPD=,
∵BE=1,
∴,
解得,P1E=2,
∴点P1的坐标为(﹣2,2),
同理可得,点P2的坐标为(﹣2,﹣2),
即点P的坐标为(﹣2,2)或(﹣2,﹣2);
(3)设过点O(0,0)和点F(﹣2,4)的直线的解析式为y=kx,
4=﹣2k,得k=﹣2,
∴直线OF的解析式为y=﹣2x,
当Q1在x轴上方时,设点Q1的坐标为(﹣2,t),如图2所示,
∵以Q为圆心的圆过A、B两点,并且和直线OF相切,
∴Q1A=,tan∠F=,
∴sin∠F=,
∴=,
即=,
解得,t=或t=(舍去),
同理可得,当Q2在x轴下方的位置时,t=,
∴点Q的坐标为(﹣2,)或(﹣2,).
科目:初中数学 来源: 题型:
【题目】某校为了更好的开展校园综合实践活动,准备购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.
(1)篮球和足球的单价各是多少元?
(2)若学校恰好用完1000元购买篮球和足球,则篮球和足球购买的都有的方案有哪几种?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B'的坐标是( )
A. (4, ) B. (,4) C. (,3) D. (, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).
备用数据:,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结论:
①若a b c 0 ,且abc 0 ,则方程a bx c 0 的解是 x 1
②若a x 1 bx 1 有唯一的解,则a b;
③若b 2a ,则关于 x 的方程ax b 0a 0的解为 x ;
④若a b c 1,且a 0 ,则 x 1一定是方程ax b c 1的解.其中结论正确个数有( ).
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3、7、9;乙盒子中装有4张卡片,卡片上分别写着2、4、6、8;盒子外有一张写着5的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.
(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;
(2)求这三条线段能组成直角三角形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列方程是关于x的一元二次方程的是( )
A. ax2+bx+c=0 B. =2 C. x2+2x=y2-1 D. 3(x+1)2=2(x+1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com