精英家教网 > 初中数学 > 题目详情
1.解下列一元二次不等式
(1)x2+5x-6>0;                                  (2)2x2+x-1<0;
(3)x2+4x+3≥0                                       (4)-x2+3x-7<0
(5)-x2+x+6≤0                                        (6)x2+1>4x-3
(7)(1+x)(4-x)<0                        (8)x2+4x+3>2x2+2x+7.

分析 (1)直接将原式分解因式进而得出不等式组得解集;
(2)直接将原式分解因式进而得出不等式组得解集;
(3)直接将原式分解因式进而得出不等式组得解集;
(4)直接得出判别式为:△=9-28<0,进而得出不等式组的解集情况;
(5)直接将原式分解因式进而得出不等式组得解集;
(6)利用配方法得出不等式的解集情况;
(7)直接将原式分解因式进而得出不等式组得解集;
(8)利用配方法得出不等式的解集情况.

解答 解:(1)(x+1)(x-6)>0,
则$\left\{\begin{array}{l}{x+1>0}\\{x-6>0}\end{array}\right.$①或$\left\{\begin{array}{l}{x+1<0}\\{x-6<0}\end{array}\right.$②,
解①得:x>6,
解②得:x<-1,
不等式的解集为x>6或x<-1;

(2)(2x-1)(x+1)<0,
则$\left\{\begin{array}{l}{2x-1<0}\\{x+1>0}\end{array}\right.$①或$\left\{\begin{array}{l}{2x-1>0}\\{x+1<0}\end{array}\right.$②,
解①得:-1<x<$\frac{1}{2}$;
解②得:无解,
不等式的解集为:-1<x<$\frac{1}{2}$;

(3)(x+1)(x+3)≥0,
则$\left\{\begin{array}{l}{x+1≥0}\\{x+3≥0}\end{array}\right.$①或$\left\{\begin{array}{l}{x+1≤0}\\{x+3≤0}\end{array}\right.$②,
解①得:x≥-1,
解②得:x≤-3,
不等式的解集为:x≥-1或x≤-3;

(4)不等式-x2+3x-7<0对应的判别式为:△=9-28<0,
∴方程-x2+3x-7=0无实数根,

(5)(-x+3)(x+2)≤0,
则$\left\{\begin{array}{l}{-x+3≤0}\\{x+2≥0}\end{array}\right.$①或$\left\{\begin{array}{l}{-x+3≥0}\\{x+2≤0}\end{array}\right.$②,
解①得:x≥3,
解②得:x≤-2,
不等式的解集为:x≥3或x≤-2;

(6)x2+1>4x-3,
x2-4x+4>0,
(x-2)2>0,
不等式的解集为:x≠2;

(7)(1+x)(4-x)<0,
则$\left\{\begin{array}{l}{1+x>0}\\{4-x<0}\end{array}\right.$①或$\left\{\begin{array}{l}{1+x<0}\\{4-x>0}\end{array}\right.$②,
解①得:x>4,
解②得:x<-1,
不等式的解集为:x>4或x<-1;

(8)x2+4x+3>2x2+2x+7,
-x2+2x-4>0,
x2-2x+4<0,
(x-1)2+3<0,
故不等式的解集为:无解.

点评 此题主要考查了一元二次不等式的解法,正确分解因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.计算:3×(-12)-(-5)÷(-1$\frac{1}{4}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.分解因式:4-x2+xy-$\frac{1}{4}$y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知2-$\sqrt{3}$是关于x的方程x2-4x-a=0的一个根,求方程的另一个根及a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(-70$\frac{5}{7}$)÷5+(-19$\frac{9}{10}$)×20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.二次函数y=x2-2x-3的图象与x轴有公共点吗?如果有,求出公共点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.求下列分式有意义的条件:
(1)$\frac{1}{x}$ 
(2)$\frac{3}{x+3}$
(3)-$\frac{a+b}{2a-b}$
(4)$\frac{n}{{m}^{2}+1}$
(5)$\frac{x+y}{{x}^{2}+{y}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知点A(a+2b,1),B(-2,2a-b),若点A,B关于y轴对称,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知菱形的周长是12cm,一条对角线长是2cm,求另一条对角线的长.

查看答案和解析>>

同步练习册答案