分析 (1)直接将原式分解因式进而得出不等式组得解集;
(2)直接将原式分解因式进而得出不等式组得解集;
(3)直接将原式分解因式进而得出不等式组得解集;
(4)直接得出判别式为:△=9-28<0,进而得出不等式组的解集情况;
(5)直接将原式分解因式进而得出不等式组得解集;
(6)利用配方法得出不等式的解集情况;
(7)直接将原式分解因式进而得出不等式组得解集;
(8)利用配方法得出不等式的解集情况.
解答 解:(1)(x+1)(x-6)>0,
则$\left\{\begin{array}{l}{x+1>0}\\{x-6>0}\end{array}\right.$①或$\left\{\begin{array}{l}{x+1<0}\\{x-6<0}\end{array}\right.$②,
解①得:x>6,
解②得:x<-1,
不等式的解集为x>6或x<-1;
(2)(2x-1)(x+1)<0,
则$\left\{\begin{array}{l}{2x-1<0}\\{x+1>0}\end{array}\right.$①或$\left\{\begin{array}{l}{2x-1>0}\\{x+1<0}\end{array}\right.$②,
解①得:-1<x<$\frac{1}{2}$;
解②得:无解,
不等式的解集为:-1<x<$\frac{1}{2}$;
(3)(x+1)(x+3)≥0,
则$\left\{\begin{array}{l}{x+1≥0}\\{x+3≥0}\end{array}\right.$①或$\left\{\begin{array}{l}{x+1≤0}\\{x+3≤0}\end{array}\right.$②,
解①得:x≥-1,
解②得:x≤-3,
不等式的解集为:x≥-1或x≤-3;
(4)不等式-x2+3x-7<0对应的判别式为:△=9-28<0,
∴方程-x2+3x-7=0无实数根,
(5)(-x+3)(x+2)≤0,
则$\left\{\begin{array}{l}{-x+3≤0}\\{x+2≥0}\end{array}\right.$①或$\left\{\begin{array}{l}{-x+3≥0}\\{x+2≤0}\end{array}\right.$②,
解①得:x≥3,
解②得:x≤-2,
不等式的解集为:x≥3或x≤-2;
(6)x2+1>4x-3,
x2-4x+4>0,
(x-2)2>0,
不等式的解集为:x≠2;
(7)(1+x)(4-x)<0,
则$\left\{\begin{array}{l}{1+x>0}\\{4-x<0}\end{array}\right.$①或$\left\{\begin{array}{l}{1+x<0}\\{4-x>0}\end{array}\right.$②,
解①得:x>4,
解②得:x<-1,
不等式的解集为:x>4或x<-1;
(8)x2+4x+3>2x2+2x+7,
-x2+2x-4>0,
x2-2x+4<0,
(x-1)2+3<0,
故不等式的解集为:无解.
点评 此题主要考查了一元二次不等式的解法,正确分解因式是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com