分析 如图,连接OD、OE、OB.由$\widehat{EB}$的度数为40°,推出∠EOB=40°,推出∠1+∠2=360°-∠EOB=320°,由∠A=$\frac{1}{2}$∠2,∠C=$\frac{1}{2}$∠1,推出∠A+∠C=$\frac{1}{2}$(∠1+∠2)=160°,即可解决问题.
解答 解:如图,连接OD、OE、OB.
∵$\widehat{EB}$的度数为40°,
∴∠EOB=40°,
∴∠1+∠2=360°-∠EOB=320°,
∵∠A=$\frac{1}{2}$∠2,∠C=$\frac{1}{2}$∠1,
∴∠A+∠C=$\frac{1}{2}$(∠1+∠2)=160°,
故答案为160°.
点评 本题考查圆心角、弦、弧的关系,解题的关键是记住弧的度数等于圆心角的度数,圆周角等于同弧所对的圆心角的一半,属于基础题,中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com