精英家教网 > 初中数学 > 题目详情

如图(1)所示,点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D.

求证:AB=CD.

如果将∠EPF的顶点P看成是沿着PO这条直线运动的,那么

(1)当顶点P在⊙O上时(如图(2)所示);是否能得到原来的结论?

(2)当顶点P在⊙O内部时(如图(3)所示),是否能得到原来的结论?

答案:
解析:

要证明两弦AB=CD,根据本节所学的定理及推论,只要能证出圆心角、弧、弦心距三个量中的一个相等即可.由于已知PO是∠EPF的平分线,利用角平分线的性质可知点OABCD的距离相等,即弦心距相等,于是可证明ABCD

证明:作OMABONCDMN为垂足

(1)(2)结论仍成立,证法同上.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,求梯形ABCD的高CD的长.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,正方形ABCD的面积为2a,将正方形ABCD的对角线BD绕点B逆时针旋转90°至BE,以BD和BE为邻边作正方形BDFE,则此正方形BDFE的面积为
 
.(用含a的代数式表示);
(2)如图2所示,再将正方形BDFE的对角线BF绕点B逆时针旋转90°至BG,以BF和BG为邻边作正方形BFHG,则此正方形BFHG的面积为
 
(用含a的代数式表示);
(3)如果按着上述的过程作第三次旋转后,所得到的正方形的面积为
 
(用含a的代数式表示);
(4)在一块边长为10米的正方形空地内种植上草坪(如图3阴影部分所示),由于这块正方形空地的左边和前边都有许多空地,所以,就在它的左边和前边(按着图2所示的过程)连续两次对这块草坪扩大种植面积,最后如图3所示的整个区域内都种上草坪,那么此时的草坪面积是多少平方米?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,正方形ABCD的面积为2a,将正方形ABCD的对角线BD绕点B按逆时针方向旋转90°至BE,以BD和BE为邻边作正方形BDFE,则正方形BDFE的面积为
 
(用含a的代数式表示);
(2)如图2所示,再将正方形BDFE的对角线BF绕点B按逆时针方向旋转90°至BG,以BF和BG为邻边作正方形BFHG,则正方形BFHG的面积为
 
(用含a的代数式表示);
(3)如果按着上述的过程作第2010次旋转后,所得到的正方形的面积为
 
(用含a的代数式表示);
(4)在一块边长为10米的正方形空地内种上草坪(如图3阴影部分所示),由于这块正方形空地的左边和前边都有许多空地,所以,就在它的左边和前边(按着图2所示的过程)连续两次对这块草坪扩大种植面积,最后如图3所示的整个区域内都种上草坪,那么此时的草坪面积是多少平方米?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

两张透明的三角形胶片完全重合摆放,如图1,所示△ABC和△DEF,将△DEF沿着公共边翻折180°,得到如图2,再把△DEF绕点B(E)按顺时针方向旋转,对应边AC与DF所在直线交于O
(1)当△DEF旋转至图3的位置即点B(E),F,A在同一条直线上,判断∠AFD与∠DCA是否相等,并予以证明;
(2)当△DEF旋转至B(E),F,A不共线时,画出其中一种图形,再判断(1)中结论是否还成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某地下车库出口处“两段式栏杆”如图7-1所示,点是栏杆转动的支点,点是栏杆两段的连接点.当车辆经过时,栏杆升起后的位置如图7-2所示,其示意图如图7-3所示,其中

米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).

(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)

 


查看答案和解析>>

同步练习册答案