精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c的顶点M的坐标是(1,3),且与y轴相交于点C(0,2),P(1,1)是抛物线对称轴上的一点.请回答下列问题:
(1)写出抛物线的解析式______;
(2)点Q是抛物线上的一点,且使△CPQ的面积等于△CMP的面积,则所有满足条件的点Q的个数为:______.
(1)设抛物线的解析式为y=a(x-1)2+3,
把C(0,2)代入得,a+3=2,解得a=-1,
∴抛物线的解析式为y=-(x-1)2+3=-x2+2x+2.
故答案为y=-x2+2x+2.

(2)∵△CPQ的面积等于△CMP的面积,
∴点Q到CP的距离等于点M到CP的距离,即点Q在与PC平行且到CP的距离等于点M到CP的距离的两条平行直线上,如图,
设直线PC的解析式为y=kx+b,
把C(0,2),P(1,1)代入得,k+2=1,b=2,解得k=-1,
∴直线PC的解析式为y=-x+2,
又∵MQ1PC,
∴设直线MQ1的解析式为y=-x+b,
把M(1,3)代入得b=4,
∴直线MQ1的解析式为y=-x+4,
联立
y=-x2+2x+2
y=-x+4
,解得
x1=1
y1=3
x2=2
y2=2

∴Q1的坐标为(2,2);
直线MQ1y=-x+4与y轴的交点N的坐标为(0,4),所以把直线MQ1向下平移4个单位后与PC的距离不变,此时平移后的直线的解析式为y=-x,设它与抛物线的交
点为Q2,Q3,如图,
联立
y=-x2+2x+2
y=-x
,解得
x1=
3+
17
2
y1=
-3-
17
2
x2=
3-
17
2
y2=
-3+
17
2

∴Q2的坐标为(
3-
17
2
-3+
17
2
),Q3的坐标为(
3+
17
2
-3-
17
2
);
所以满足条件的点Q的个数有三个.
故答案为y=-x2+2x+2;3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,若二次函数y=
3
6
x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=
3
x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
3
x的图象于点D,连结AC,交正比例函数y=
3
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:在面积为7的梯形ABCD中,ADBC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PEDQ交AQ于E,作PFAQ交DQ于F,则△PEF面积最大值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色、模拟“摸出一个球是白球”的机会,可以用下列哪种替代物进行实验(  )
A.“抛掷一枚普通骰子出现1点朝上”的机会
B.“抛掷一枚啤酒瓶盖出现盖面朝上”的机会
C.“抛掷一枚质地均匀的硬币出现正面朝上”的机会
D.“抛掷一枚普通图钉出现针尖触地”的机会

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=
1
2
x2-3x+c
交x轴正半轴于A、B两点,交y轴于C点,过A、B、C三点作⊙D.若⊙D与y轴相切.
(1)求c的值;
(2)连接AC、BC,设∠ACB=α,求tanα;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA.O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA的任意平面上的抛物线如图1所示,建立平面直角坐标系(如图2),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+
5
2
x+
3
2
,请回答下列问题:
(1)花形柱子OA的高度;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=9-4x2的最大值是______.

查看答案和解析>>

同步练习册答案