【题目】如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.
(1)求直线l1的表达式和点P的坐标;
(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).
①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;
②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.
【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.
【解析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;
(2)①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF距离;
②设点A坐标,表示△PMN即可.
(1)设直线l1的表达式为y=kx+b,
∵直线l1过点F(0,10),E(20,0),
∴,解得:,
直线l1的表达式为y=﹣x+10,
解方程组得,
∴点P坐标为(8,6);
(2)①如图,当点D在直线上l2时,
∵AD=9
∴点D与点A的横坐标之差为9,
∴将直线l1与直线l2 的解析式变形为x=20﹣2y,x=y,
∴y﹣(20﹣2y)=9,
解得:y=,
∴x=20﹣2y=,
则点A的坐标为:(,),
则AF=,
∵点A速度为每秒个单位,
∴t=;
如图,当点B在l2 直线上时,
∵AB=6,
∴点A的纵坐标比点B的纵坐标高6个单位,
∴直线l1的解析式减去直线l2 的解析式得,
﹣x+10﹣x=6,
解得x=,
y=﹣x+10=,
则点A坐标为(,)
则AF=,
∵点A速度为每秒个单位,
∴t=,
故t值为或;
②如图,
设直线AB交l2 于点H,
设点A横坐标为a,则点D横坐标为a+9,
由①中方法可知:MN=,
此时点P到MN距离为:a+9﹣8=a+1,
∵△PMN的面积等于18,
∴=18,
解得
a1=-1,a2=﹣-1(舍去),
∴AF=6﹣,
则此时t为,
当t=时,△PMN的面积等于18.
科目:初中数学 来源: 题型:
【题目】某校为了了解了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查调查,调查结果分为“非常了解“、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题:
(1)本次调查的学生共有 人,估计该校2000名学生中“不了解”的人数约有 人.
(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图和列表的方法,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家需要用钢管做防盗窗,按设计要求,其中需要长为 0.8m,2.5m 且粗细相同的钢管分别为 100 根,32 根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为 6m.
(1)试问一根 6m 长的圆钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法①:当只裁剪长为 0.8m 的用料时,最多可剪 根;
方法②:当先剪下 1 根 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根;
方法③:当先剪下 2 根 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根.
(2)分别用(1)中的方法②和方法③各裁剪多少根 6m 长的钢管,才能刚好得到所需要的相应数量的材料?
(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要 6m 长的钢管与(2) 中根数相同?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.
(1)求证:AC∥PO;
(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,过点A(2,0)的直线与y轴交于点B,与双曲线交于点P,点P位于y轴左侧,且到y轴的距离为1,已知tan∠OAB=.
(1)分别求出直线与双曲线相应的函数表达式;
(2)观察图象,直接写出不等式>的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com