精英家教网 > 初中数学 > 题目详情
(2008•杭州)如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF;
(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠C的取值范围.

【答案】分析:(1)证得△ACP≌△BCP即可;
(2)加上(1)的结论,证得△ACE≌△BCF即可;
(3)假设存在点P,能使得S△ABC=S△ABG,由(2)得到的AE=BF,则新三角形ABG也为等腰三角形,根据底边都为AB,面积相等,得到高相等,所以AC=AE,即三角形ACE为等腰三角形,则底角∠C为锐角,即可得到∠C的取值范围.
解答:(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.

(2)证明:∵在△ACE与△BCF中,

∴△ACE≌△BCF(ASA).
∴AE=BF.

(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,
∴S△ABC=S△ABG
∴AE=AC.
①当∠C为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;
②当∠C为锐角时,∠CAH=90°-∠C,而∠CAE<∠CAH,要使AE=AC,只需使∠C=∠CEA,
此时,∠CAE=180°-2∠C,
只须180°-2∠C<90°-1/2∠C,解得60°<∠C<90°.
点评:本题考查了全等三角形的判定与性质及等腰三角形的性质;两条线段在不同的三角形中要证明相等时,通常是利用全等来进行证明.需注意已证得条件在以后证明中的应用,以及分情况进行讨论等情况.
练习册系列答案
相关习题

科目:初中数学 来源:2010年广东省广州市南沙区中考数学一模试卷(解析版) 题型:选择题

(2008•杭州)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=( )

A.70°
B.80°
C.90°
D.100°

查看答案和解析>>

科目:初中数学 来源:2009年重庆市綦江县赶水中学学模拟测试数学试卷(解析版) 题型:解答题

(2008•杭州)如图,已知∠α,∠β,用直尺和圆规求作一个∠γ,使得∠γ=∠α-∠β.(只须作出正确图形,保留作图痕迹,不必写出作法)

查看答案和解析>>

科目:初中数学 来源:2009年浙江省嘉兴市数学素质评估卷3(秀洲区王江泾镇中学)(解析版) 题型:选择题

(2008•杭州)如图,记抛物线y=-x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…Pn-1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面积分别为S1,S2,…,这样就有S1=,S2=,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2008年浙江省杭州市中考数学试卷(解析版) 题型:填空题

(2008•杭州)如图,大圆O的半径OC是小圆O1的直径,且有OC垂直于圆O的直径AB.圆O1的切线AD交OC的延长线于点E,切点为D.已知圆O1的半径为r,则AO1=    ,DE=   

查看答案和解析>>

同步练习册答案