精英家教网 > 初中数学 > 题目详情

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C
(1)抛物线对称轴方程为______;
(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是______.

解:(1)抛物线对称轴方程:x=2.

(2)依题意,B、C关于点E中心对称,当A,D也关于点E对称,且BE=AE时,四边形ABDC是正方形.
∵A(2,b),
∴AE=|b|,
∴B(2-|b|,0),
把B(2-|b|,0)代入y=a(x-2)2+b,得ab2+b=0,
∵b≠0,
∴ab•b+b=0,
∴ab=-1.
故答案为:x=2;ab=-1.
分析:(1)根据抛物线的顶点式y=a(x-2)2+b直接得出答案;
(2)根据B、C关于点E中心对称,当A,D也关于点E对称,且BE=AE时,四边形ABDC是正方形,即可求出.
点评:此题主要考查了二次函数的顶点式的应用以及二次函数的对称性,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点,同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知一抛物线与x轴的交点是A(-1,0)、B(m,0)且经过第四象限的点C(1,n),而m+n=-1,mn=-12,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(
 
,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2-6x+c的最小值为1,那么c的值是(  )
A、10B、9C、8D、7

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2-4x+1,将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)由抛物线对称轴知识我们已经知道:直线x=m,即为过点(m,0)平行于y轴的直线,类似地,直线y=m,即为过点(0,m)平行于x轴的直线、请结合图象回答:当直线y=m与这两条抛物线有且只有四个交点,实数m的取值范围;
(3)若将已知的抛物线解析式改为y=x2+bx+c(b<0),并将此抛物线沿x轴向左平移-b个单位长度,试回答(2)中的问题.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城模拟)如图a,在平面直角坐标系中,A(0,6),B(4,0)

(1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为
(0,-3)
(0,-3)
,点B的对应点C的坐标为
(-2,0)
(-2,0)

(2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象;
(3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形?

查看答案和解析>>

同步练习册答案