精英家教网 > 初中数学 > 题目详情
1.用合适的方法解下列方程组
(1)$\left\{\begin{array}{l}{y=40-2x}\\{3x+2y=22}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=5}\\{4x-2y=1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{6x+5y=15}\\{3x-y=-3}\end{array}\right.$
(4)$\frac{3x+2y}{5}$=$\frac{-x-3y}{3}$=4.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{y=40-2x①}\\{3x+2y=22②}\end{array}\right.$
把①代入②得,3x+2(40-2x)=22,解得x=58,
把x=58代入①得,y=40-2×58=-76,
故原方程组的解为$\left\{\begin{array}{l}{x=58}\\{y=-76}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=5①}\\{4x-2y=1②}\end{array}\right.$
①×2-②得,8y=9,解得y=$\frac{9}{8}$,
把y=$\frac{9}{8}$代入①得,2x+3×$\frac{9}{8}$=5,解得,x=$\frac{13}{16}$,
故原方程组的解为$\left\{\begin{array}{l}{x=\frac{13}{16}}\\{y=\frac{9}{8}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{6x+5y=15①}\\{3x-y=-3②}\end{array}\right.$
①+②×5得,21x=0,解得,x=0,
把x=0代入①得,5y=15,解得y=3,
故原方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$;
(4)原方程可化成方程组$\left\{\begin{array}{l}{3x+2y=20}\\{-x-3y=12}\end{array}\right.$,
①+②×3得,-7y=56,解得,y=-8,
把y=-8代入②得,-x+24=12,解得,x=12.
故原方程组的解为$\left\{\begin{array}{l}{x=12}\\{y=-8}\end{array}\right.$.

点评 本题考查的是二元一次方程组及三元一次方程组的解法,解方程组的方法就是消元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
x-3$-\frac{5}{2}$-2-1012$\frac{5}{2}$3
y3$\frac{5}{4}$m-10-10$\frac{5}{4}$3
其中m=0.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有3个交点,所对应的方程x2-2|x|=0有3个实数根;
②方程x2-2|x|=2有2个实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.甲口袋中装有三个小球,分别标有号码1、2、3;乙口袋中装有两个小球,分别标有号码1、2;这些小球除数字外完全相同,从甲乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.(画树状图)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列方程中,是关于x的一元二次方程的是(  )
A.x-$\frac{1}{x}$=1B.(x+1)(x-1)=x(x+2)C.x2=0D.x3+x2+2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.用整体思想解方程组:
(1)$\left\{\begin{array}{l}{x+2(x+2y)=4}\\{x+2y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{x-3y}{3}-\frac{1}{3}=1}\\{2x-\frac{x-3y}{4}=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)(6x3y2-9x2y3)÷(-$\frac{1}{3}$xy)           
(2)(3x-2y+1)(3x-2y-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:
(1)8y=-2(y-5);                      
(2)$\frac{x-1}{2}$=1-$\frac{x+1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)已知二次函数y=ax2+bx+1的图象经过点(1,3)和(3,-5),求a、b的值;
(2)已知二次函数y=-x2+bx+c的图象与x轴的两个交点的横坐标分别为1和2.求这个二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:(1)(-2t+3)2        (2)(x-4)(x+4)-(1-2x)2

查看答案和解析>>

同步练习册答案