精英家教网 > 初中数学 > 题目详情

【题目】如图1,在中,分别为上一点,且.

1)求证:

2)求证:

3)若,将顺时针旋转至如图2所示位置(不动),连,取中点,连,为射线上一点,连,求的最小值.

【答案】1)见解析;(2)见解析;(3

【解析】

1)由可得,由可得,可证

2)延长,使,连,在上截取,连,可证:可得,可证:可得,故即可证

3)延长使,连,延长交于

可证:,故,由(2)知,由于故可得,故.可证,可得可证为正三角形,故,由于即可求出的最小值.

1)证明:

2)证明:延长,使,连,在上截取,连.

∵BD=CD,∠BDF=∠CDS

∵∠TCD =∠EBC

∴∠TCD=∠DCS

∵TC=SC,CD=CD

.

3)解:延长使

,延长交于

∵M是AC的中点

AM=MC

∵∠CME=∠SMA,EM=MS

由(2)知

.

为正三角形,

的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,EF分别为边ABCD的中点,BD是对角线,AG∥DBCB的延长线于G

1)求证:△ADE≌△CBF

2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里装有5个分别写有数字01234的小球,它们除数字不同外其余全部相同.现从盒子里随机摸出一个小球(不放回),设该小球上的数字为m,再从盒子中摸出一个小球,设该小球上的数字为n,点P的坐标为,则点P落在抛物线x轴所围成的区域内(含边界)的概率是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为的面积为的函数关系图象如图所示,则边的长为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在中,,点边的中点,点上,连接并延长到点,使,点在线段上,且.

1)如图1,连接,当时,求证:

2)如图2,当时,则线段之间的数量关系为

3)在(2)的条件下,延长,使,连接,若,求证:,并求的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,且AC=OC.

(1)求弧BC的度数;

(2)设⊙O的半径为5,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关注数学文化:古希腊的几何学家海伦在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边长分别为a,b,c,记p=,则三角形的面积S=(海伦公式).我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的秦九韶公式:.海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦-秦九韶公式.

若△ABC的三边长分别为5,6,7,△DEF的三边长分别为,请选择合适的公式分别求出△ABC和△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.

(1)写出按上述规定得到所有可能的两位数;

(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对钝角α,定义三角函数值如下:

sinαsin(180°-α)cosα=-cos(180°-α)

(1)sin120°,cos120°的值;

(2)若一个钝角三角形的三个内角比是114,点AB是这个三角形的两个顶点,sinAcosB是方程4x2mx10的两个不相等的实数根,求m的值及∠A和∠B的度数.

查看答案和解析>>

同步练习册答案