精英家教网 > 初中数学 > 题目详情

“兄弟餐厅”采购员某日到集贸市场采购草鱼,若当天草鱼的采购单价(元)与采购量(斤)之间的关系如图,且采购单价不低于4元/斤.
(1)直接写出关于的函数关系式,并写出自变量的取值范围;
(2)若这天他采购草鱼的量不多于20斤,那么这天他采购草鱼最多用去多少钱?       

(1)
(2)时,元.

解析试题分析:(1)根据图形分段写出函数关系式即可;(2)根据当0<x≤10时,当10<x≤30时,分别求出获利w与x的函数关系式,进而求出最值即可.
试题解析:(1)
(2)设采购员当天购买斤草鱼,用去元.依题意得:
时, ,
时,
 ,抛物线开口向下,当的增大而增大,

综上所述,时,元.
考点:一次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1<y2成立的自变量x的取值范围;
(3)在x轴的正半轴上存在一点P,且△ABP的面积是6,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.

(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求:(1)a的值
(2)k,b的值
(3)这两个函数图象与y轴所围成的三角形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,直线l与直线 y= -2x关于y轴对称,直线l与反比例函数的图象的一个交点为A(2, m).
(1)试确定反比例函数的表达式;
(2)若过点A的直线与x轴交于点B,且∠ABO=45°,直接写出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

经过点(1,1)的直线l:与反比例函数G1:的图象交于点,B(b,-1),与y轴交于点D.
(1)求直线l对应的函数表达式及反比例函数G1的表达式;
(2)反比例函数G2::
①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;
②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是   m,甲的速度是   m/s;
(2)分别写出甲在时,y关于t的函数关系式:
,y=    ;当时,y=   
(3)在图2中画出乙在2分钟内的函数大致图象(用虚线画);
(4)请你根据(3)中所画的图象直接判断,若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了几次?2分钟时,乙距池边B1B2的距离为多少米。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:

(1)求乙车所行路程与时间的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程.

查看答案和解析>>

同步练习册答案