精英家教网 > 初中数学 > 题目详情

如图,生活中,将一个宽度相等的纸条按右图所示折叠一下,如果∠1=140°,那么∠2的度数为


  1. A.
    140°
  2. B.
    120°
  3. C.
    110°
  4. D.
    100°
C
分析:根据折叠的性质得到∠3=∠4,由a∥b,根据平行线的性质得到∠1=∠3+∠4,∠2+∠3=180°,可计算出∠3=70°,则∠2=180°-70°=110°.
解答:解:如图,
∵将一个宽度相等的纸条按右图所示折叠,
∴∠3=∠4,
∵a∥b,
∴∠1=∠3+∠4,∠2+∠3=180°,
∴2∠3=140°,
∴∠3=70°,
∴∠2=180°-70°=110°.
故选C.
点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角相等;平行与同一条直线的两直线平行.也考查了折叠的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的题目及分析过程,再回答问题.
设x,y为正实数,且x+y=6,求
x2+1
+
y2+4
的最小值.分析:(1)如图(1),作长为6的线段AB,过A、B两点在同侧各做AC⊥AB,BD⊥AB,使AC=1,BD=2.
(2)设P是AB上的一个动点.设PA=x,PB=y,则x+y=6,连接PC、PD,则PC=
x2+1
,PD=
y2+4
精英家教网
(3)只要在AB上找到使PC+PD为最小的点P的位置,就可以计算出
x2+1
+
y2+4
的最小值.问题:①在图(2)中作出符合上述要求的点.
②求AP的长?
③通过上述作图,计算当x+y=6时,
x2+1
+
y2+4
的最小值为
 

解决问题:
为了丰富学生的课余生活,石家庄外国语学校决定举办一次机器人投篮大赛.规则是:操纵者站在距线段AB 2米的C处,如图(3)使机器人从A点出发,到C处取到篮球,然后行驶到B处,将篮球投入设在B处的篮筐内,用时少的即为胜利者,为了获得胜利,请你画出C的最佳位置;并求当AB=3米时机器人行驶的最短路程?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平阳县二模)为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学;
(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,生活中,将一个宽度相等的纸条按右图所示折叠一下,如果∠1=140°,那么∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

同步练习册答案