精英家教网 > 初中数学 > 题目详情
在△ABC中,AD是角平分线,AE是高线
①如图1所示,∠ABC=40°,∠ACB=70°,求∠DAE.
②如图2所示,∠ABC=30°,∠ACB=110°,求∠DAE.
③根据①、②两题的计算结果,请猜想∠DAE与∠ABC和∠ACB之间的关系.(用等式表示出来)
分析:①根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠CAD,根据三角形内角和定理求出∠EAC,即可求出答案;
②根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠CAD,根据三角形内角和定理求出∠EAC,即可求出答案;
③根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠CAD,根据三角形内角和定理求出∠EAC,即可求出答案.
解答:解:①∵∠ABC=40°,∠ACB=70°,
∴∠BAC=180°-∠ABC-∠ACB=70°,
∵AD平分∠BAC,
∴∠CAD=
1
2
∠BAC=
1
2
×70°=35°,
∵AE⊥BC,
∴∠AEC=90°,
∵∠C=70°,
∴∠EAC=180°-90°-70°=20°,
∴∠DAE=∠DAC-∠EAC=35°-20°=15°.

②∵∠ABC=30°,∠ACB=110°,
∴∠BAC=180°-∠ABC-∠ACB=40°,
∵AD平分∠BAC,
∴∠CAD=
1
2
∠BAC=
1
2
×40°=20°,
∵AE⊥BC,
∴∠AEC=90°,
∵∠C=110°,
∴∠EAC=∠ACB-∠AEC=110°-90°=20°,
∴∠DAE=∠DAC+∠EAC=20°+20°=40°.

③∠DAE=
1
2
∠ACB-
1
2
∠ABC,理由如下:
分为两种情况:如图1,
∠BAC=180°-(∠ABC+∠ACB),
∵AD平分∠BAC,
∴∠DAC=
1
2
[180°-(∠ABC+∠ACB)]=90°-
1
2
∠ABC-
1
2
∠ACB,
∵AE⊥BC,
∴∠AEC=90°,
∴∠CAE=90°-∠ACB,
∴∠DAE=∠DAC-∠EAC=(90°-
1
2
∠ABC-
1
2
∠ACB)-(90°-∠ACB)=
1
2
∠ACB-
1
2
∠ABC;
如图2,
∠BAC=180°-∠ABC-∠ACB,
∵AD平分∠BAC,
∴∠CAD=
1
2
∠BAC=
1
2
×(180°-∠ABC-∠ACB)=90°-
1
2
∠ABC-
1
2
∠ACB,
∵AE⊥BC,
∴∠AEC=90°,
∴∠EAC=∠ACB-∠AEC=∠ACB-90°,
∴∠DAE=∠DAC+∠CAD=90°-
1
2
∠ABC-
1
2
∠ACB+∠ACB-90°=
1
2
∠ACB-
1
2
∠ABC.
点评:本题考查了角平分线定义,三角形内角和定理,三角形外角性质的应用,主要考查学生综合运用性质进行推理和计算的能力,求解过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是BC边上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的长.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,AD的弦心距为1,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF.

查看答案和解析>>

同步练习册答案