精英家教网 > 初中数学 > 题目详情
8、1、如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.
(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形:

(2)根据你所选的条件,证明△ABC是等腰三角形;
2、如图,E、F是平行四边形ABCD对角线BD上的两点,给出下列三个条件:①BE=DF;②∠AEB=∠DFC;③AF∥EC.请你从中选择一个适当的条件
,使四边形AECF是平行四边形,并证明你的结论.
分析:1、有条件①④,再加上一组对顶角相等,可证△BOE≌△COD,得到一组对应角相等,而OB=OC,又能得到一组角相等,利用等角加等角和相等,可得∠ABC=∠ACB,得证.
2、连接AC交BD于O,那么能得到,OA=OC,OB=OD,再结合已知条件BE=DF,可得到OE=OF,那么就有EF,AC互相平分,即四边形AECF是平行四边形.
解答:1、(1)解:∠EBO=∠DCO,OB=OC,
(2)证明:
∵OB=OC,
∴∠OBC=∠OCB又∠EBO=∠DCO,
∴∠OBC+∠EBO=∠OCB+∠DCO,
即∠ABC=∠ACB.
∴AB=AC.

2、证明:选择条件①,连AC交BD于O点,
∵平行四边形ABCD中,AC、BD为对角线,
∴OA=OC,OB=OD又BE=DF,
∴OE=OF.
∴AECF是平行四边形.
点评:本题利用了全等三角形的判定和性质,等角加等角和相等,以及平行四边形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将另外一个含30°角的△EDF的30°角精英家教网的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直.
(1)设AD=x,CF=y,求y与x之间的函数解析式,并写出函数自变量的取值范围;
(2)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点精英家教网F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,AC=6,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,在△ABC中,D是BC上的一点,∠C=62°,∠CAD=32°,则∠ADB=
94
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于点P,AC=4cm,BC=3cm,AB=5cm,则△CPB的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,EF∥AC,则∠CEF的大小为
 

查看答案和解析>>

同步练习册答案