精英家教网 > 初中数学 > 题目详情
如图,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=QB=BC,则∠PCQ的度数为(  )
分析:可设∠A=x,根据在AC上取点D,使QD=PQ,连接QD、BD,再利用已知得出△BDQ为等边三角形,进而得出x的角度,即可得出答案.
解答:解:在AC上取点D,使QD=PQ,连接QD、BD,
设∠A=x,则∠QDP=∠QPD=2x,∠BQD=3x,
∵DQ=QB,
∴∠QBD=90°-1.5x,∠BDC=90°-0.5x,
又∵AB=AC,
∴∠ABC=∠ACB=90°-0.5x,
∴BD=BC,
∴BD=BQ=QD,
∴△BDQ为等边三角形,
∴∠QBD=90°-1.5x=60°,
故x=20°,
∴∠ABC=80°,
∴∠QCB=50°,
∴∠PCQ=80°-50°=30°.
故选A.
点评:此题主要考查学生对等腰三角形的判定与性质和三角形外角的性质的理解和掌握,此题的关键是得出△BDQ为等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰△ABC的面积为8cm2,点D,E分别是AB,AC边的中点,则梯形DBCE的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰三角形ADC,AD=AC,B是线段DC上的一点,连接AB,且有AB=DB.
(1)若△ABC的周长是15厘米,且
AB
AC
=
2
3
,求AC的长;
(2)若
AB
DC
=
1
3
,求tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•西藏)如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.

查看答案和解析>>

同步练习册答案