精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )

A.
B.4
C.
D.5

【答案】C
【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,

∵AD是∠BAC的平分线.
∴PQ=PM,这时PC+PQ有最小值,即CM的长度,
∵AC=6,BC=8,∠ACB=90°,
∴AB= = =10.
∵SABC= ABCM= ACBC,
∴CM= = =
即PC+PQ的最小值为
故选:C.
过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SABC= ABCM= ACBC,得出CM的值,即PC+PQ的最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,则∠BAE的度数为何?(  )

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.

(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2
其中正确的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.

(1)求证:ABE≌△EGF;

(2)若AB=2,S△ABE=2S△ECF,求BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于RtBAERtBFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的RtBEARtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+m的图象与反比例函数y= 的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤ 的解集.

查看答案和解析>>

同步练习册答案