A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
分析 ①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;
②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;
③由②的结论,等量代换即可;
④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=$\frac{1}{2}$AC,求证△CMD≌△CND,可得CN=DM=$\frac{1}{2}$AC=$\frac{1}{2}$BC,从而得出CN=BN.然后即可得出结论.
解答 解:∵∠CAD=30°,AC=AD,
∴∠ACD=∠ADC=75°,
∵CE⊥CD,
∴∠ECA=165°,①正确;
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴BE=AD,③正确;
∵BC=AD,
∴BE=BC,②正确;
过D作DM⊥AC于M,过D作DN⊥BC于N.
∵∠CAD=30°,且DM=$\frac{1}{2}$AC,
∵AC=AD,∠CAD=30°,
∴∠ACD=75°,
∴∠NCD=90°-∠ACD=15°,∠MDC=∠DMC-∠ACD=15°,
在△CMD和△CND中,
$\left\{\begin{array}{l}{∠CMD=∠CND}\\{∠MDC=∠NCD}\\{CD=CD}\end{array}\right.$,
∴△CMD≌△CND,
∴CN=DM=$\frac{1}{2}$AC=$\frac{1}{2}$BC,
∴CN=BN.
∵DN⊥BC,
∴BD=CD.∴④正确,
故选:D.
点评 此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com