【题目】已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
【答案】AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.
【解析】
依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.
AB∥EF ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( 两直线平行,内错角相等 )
∵∠B=70°,
∴∠BCD=70°,( 等量代换 )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ ∠E + ∠DCE =180°,
∴EF∥ CD ,( 同旁内角互补,两直线平行 )
∴AB∥EF.( 平行于同一直线的两条直线互相平行 )
科目:初中数学 来源: 题型:
【题目】如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=-2x+1000.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明正在做一个半径为米的地球模型.
(1)他想用一根铁丝围住地球模型的赤道,大约需要多少的铁丝?如果要把这个模型的半径增加米,要围住赤道需要增加多长的铁丝?
(2)假设真的为地球赤道做一个铁箍,大约要多长的铁丝?如果将铁箍所围的半径增加米,那么需要增加多长的铁丝?(地球半径约为千米)
(3)比较(1)(2)的结果,请叙述一下你发现了什么?
(4)如果小明做的地球的模型的半径为,如果地球体积是地球模型体积的倍,求的值.(球的体积公式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形中,在边上取两点、,使.若,,, 则以,,为边长的三角形的形状为( )
A.锐角三角形B.直角三角形C.钝角三角形D.随,,的值而定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.
(1)一个角的平分线 这个角的“巧分线”;(填“是”或“不是”)
(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ= ;(用含α的代数式表示出所有可能的结果)
【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.
(3)当t为何值时,射线PM是∠QPN的“巧分线”;
(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com