精英家教网 > 初中数学 > 题目详情
14.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧$\widehat{AA′}$、$\widehat{CC′}$是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为(  )
A.4π+2$\sqrt{3}$B.$\frac{16}{3}$π-2$\sqrt{3}$C.$\frac{16}{3}$π+2$\sqrt{3}$D.

分析 根据扇形面积公式S=$\frac{nπ{R}^{2}}{360}$求出扇形ABA′的面积和扇形CBC′的面积,根据图形可得图中阴影部分的面积=Rt△ABC+扇形ABA′的面积-扇形CBC′的面积计算即可.

解答 解:∵AB=4,∠A=30°,
∴BC=2,AC=2$\sqrt{3}$,
∴图中阴影部分的面积
=Rt△ABC+扇形ABA′的面积-扇形CBC′的面积
=2$\sqrt{3}$×2÷2+$\frac{120×π×{4}^{2}}{360}$-$\frac{120×π×{2}^{2}}{360}$
=2$\sqrt{3}$+$\frac{16}{3}$π-$\frac{4}{3}$π
=4π+2$\sqrt{3}$.
故选:A.

点评 本题考查的是轨迹、扇形面积的计算和旋转的性质,掌握扇形面积公式S=$\frac{nπ{R}^{2}}{360}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=1:2,FB=12,则DF=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.分式方程$\frac{x}{x-2}$-1=$\frac{4}{{x}^{2}-4}$的解为x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA,AO,并延长AO交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若cos∠CAO=$\frac{4}{5}$,且OC=6,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一只不透明的袋子中装有颜色分别为红、黄、蓝的球各一个,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为$\frac{1}{3}$;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,通过树状图或表格列出所有等可能性结果,并求两次都是摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2000m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.
(1)直接写出小明所走路程s与时间t的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早18min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足AB=AC时,四边形AEFD是菱形.(无需证明)
②△ABC满足∠BAC=150°时,四边形AEFD是矩形.(无需证明)
③△ABC满足AB=AC,∠BAC=150°时,四边形AEFD是正方形.(无需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,二次函数y=x2-2x+m(m>0)的对称轴与比例系数为5的反比例函数图象交于点A,与x轴交于点B,抛物线的图象与y轴交于点C,且OC=3OB.
(1)求点A的坐标;
(2)求直线AC的表达式;
(3)点E是直线AC上一动点,点F在x轴上方的平面内,且使以A、B、E、F为顶点的四边形是菱形,直接写出点F的坐标.

查看答案和解析>>

同步练习册答案