精英家教网 > 初中数学 > 题目详情

设a,b,c是△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状.

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

 

【答案】

(1)∵x2+x+c-a=0有两个相等的实数根,

∴△=(2-4×(c-a)=0,

整理得a+b-2c=0 ①,

又∵3cx+2b=2a的根为x=0,

∴a=b ②,

把②代入①得a=c,

∴a=b=c,

∴△ABC为等边三角形;

(2)a,b是方程x2+mx-3m=0的两个根,

∴方程x2+mx-3m=0有两个相等的实数根

∴△=m2-4×(-3m)=0,

即m2+12m=0,

∴m1=0,m2=-12.

当m=0时,原方程的解为x=0(不符合题意,舍去),

∴m=-12.

【解析】(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,b的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可得到关于a,b的方程组,可求出a,b的关系式;

(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的平分线,设CD=a,BD=b,AB=c.
(1)猜想a,b,c之间的数量关系,并说明理由;
(2)请你根据问题(1)提出一个问题,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

39、设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.
精英家教网
(1)求y与x的函数关系式;
(2)试确定Rt△ABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
(3)试判断以P为圆心,半径为y的圆与⊙I能否相切?若能,请求出相应的x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•石景山区一模)七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到了D、E处,设DC与BE的交点为F.
(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.
(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.

查看答案和解析>>

同步练习册答案