A. | $2\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
分析 先判断出OD⊥AC、OE⊥BC时∠ACB最大,从而得到AB最大,连接OC,根据直角三角形30°角所对的直角边等于斜边的一半求出∠ACO=30°,再根据垂径定理和勾股定理求出AC,然后求出∠ACB=60°,再求出AC=BC,从而得到△ABC是等边三角形,最后根据等边三角形的性质可得AB=AC.
解答 解:如图,当OD⊥AC、OE⊥BC时∠ACB最大,AB最大,
连接OC,
∵⊙O的半径为2$\sqrt{2}$,OD=$\sqrt{2}$,
∴∠ACO=30°,
∴AC=2CD=2$\sqrt{O{C}^{2}-O{D}^{2}}$=2$\sqrt{(2\sqrt{2})^{2}-(\sqrt{2})^{2}}$=2$\sqrt{6}$,
同理可得∠BCO=30°,
∴∠ACB=60°,
∵OD=OE,OD⊥AC、OE⊥BC,
∴AC=BC,
∴△ABC是等边三角形,
∴AB=AC=2$\sqrt{6}$,
即AB的最大值为2$\sqrt{6}$.
故选A.
点评 本题考查了垂径定理,等边三角形的判定与性质,勾股定理,熟练掌握圆的性质并判断出AB取得最大值的情况是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{13}$ | B. | 8 | C. | 2$\sqrt{14}$ | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com