精英家教网 > 初中数学 > 题目详情

如图,已知一个由小正方体组成的几何体的左视图和俯视图.
(1)该几何体最少需要几块小正方体?最多可以有几块小正方体?
(2)请画出该几何体的所有可能的主视图.

解:俯视图中有4个正方形,那么组合几何体的最底层有4个正方体,
(1)由左视图第二层有1个正方形可得组合几何体的第二层最少有1个正方体,
俯视图从上边数第一行的第二层最多可有3个正方体,
所以该几何体最少需要4+1=5块小正方体;最多需要4+3=7块小正方体.

(2)作图如下:

分析:(1)由俯视图可得最底层的几何体的个数,由左视图第二层正方形的个数可得第二层最少需要几块正方体,相加即可得到该几何体最少需要几块小正方体;由俯视图和左视图可得第二层最多需要几块小正方体,再加上最底层的正方体的个数即可得到最多可以有几块小正方体.
(2)根据俯视图可知有三列,由左视图即可得出所有的组成图形,即可得出主视图.
点评:考查由三视图判断几何体;用到的知识点为:俯视图正方形的个数为组合几何体最底层的正方体的个数;左视图第二层正方形的个数为组合几何体第二层的正方体最少的个数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线经过B点,且顶点在直线上.

1.求抛物线对应的函数关系式;

2.若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由

3.在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.

4.在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线经过B点,且顶点在直线上.

【小题1】求抛物线对应的函数关系式;
【小题2】若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由
【小题3】在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
【小题4】在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届浙江台州豪佳中学八年级(下)第一次月考数学试卷(解析版) 题型:解答题

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。

设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。

∵m>0, (定值),由以上结论可得:

只有当m=       时,镜框周长有最小值是       

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

 

查看答案和解析>>

科目:初中数学 来源:浙江省月考题 题型:解答题

阅读理解:对于任意正实数a、b,
≥0,
≥0,
,只有当a=b时,等号成立
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。
∵m>0,(定值),
由以上结论可得:只有当m=       时,镜框周长有最小值是      
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系。

查看答案和解析>>

同步练习册答案