精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,DE分别是ABBC边上的中点,过点CCFAB,交DE的延长线于F点,连接CDBF

1)求证:△BDE≌△CFE

2)△ABC满足什么条件时,四边形BDCF是矩形?

【答案】(1)详见解析;(2)BCAC时,四边形BDCF是矩形,理由详见解析

【解析】

1)由平行线的性质得出∠DBE=∠CFE,由中点的定义得出BECE,由ASA证明△BDE≌△CFE即可;

2)先证明DE是△ABC的中位线,得出DEAC,证出四边形BDCF是平行四边形,得出ADCF,证出CFBD,得出四边形BDCF是平行四边形;再由等腰三角形的性质得出CDAB,即可得出结论.

1)证明:∵CFAB

∴∠DBE=∠CFE

EBC的中点,

BECE

在△BDE和△CFE中,

∴△BDE≌△CFEASA);

2)解:当BCAC时,四边形BDCF是矩形,理由如下:

DE分别是ABBC的中点

DE是△ABC的中位线,

DEAC,又AFBC

∴四边形BDCF是平行四边形,

ADCF

BDAD

CFBD,又CFBD

∴四边形BDCF是平行四边形;

BCACBDAD

CDAB,即∠BDC90°,

∴平行四边形BDCF是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点分别是上的中点,连接并延长至点,使,连接.

(1)证明:

(2)若AC=2,连接BF,求BF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)请根据你发现的规律填空:6×8+1=(   2

(2)用含n的等式表示上面的规律:   

(3)用找到的规律解决下面的问题:

计算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据统计,全球每分钟约有8400000吨垃圾产生,则每秒钟的产生的垃圾用科学记数法表示应是___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点EF分别为边BCCD的中点,AFDE相交于点G,则可得结论:①AFDE②AFDE(不须证明).

1)如图,若点EF不是正方形ABCD的边BCCD的中点,但满足CEDF,则上面的结论是否仍然成立;(请直接回答“成立”或“不成立”)

2)如图,若点EF分别在正方形ABCD的边CB的延长线和DC的延长线上,且CEDF,此时上面的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.

3)如图,在(2)的基础上,连接AEEF,若点MNPQ分别为AEEFFDAD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分周长和是_________(用代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AB=5,AC=3,点DBC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DEAB于点F,当DEB是直角三角形时,DF的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

1)小明总共剪开了   条棱.

2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补 全.(请在备用图中画出所有可能)

3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.

查看答案和解析>>

同步练习册答案