精英家教网 > 初中数学 > 题目详情

【题目】如图,直角坐标系中,直线与反比例函数的图象交于AB两点,已知A点的纵坐标是2.

(1)求反比例函数的解析式.

(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点Py轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

【答案】(1);(2)P(0,6)

【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.

试题解析:

令一次函数,则

解得:,即点A的坐标为(-4,2).

点A(-4,2)在反比例函数的图象上,

∴k=-4×2=-8,

∴反比例函数的表达式为

连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.

设平移后直线于x轴交于点F,则F(6,0)

设平移后的直线解析式为

将F(6,0)代入得:b=3

∴直线CF解析式:

3=,解得:

∴C(-2,4)

∵A、C两点坐标分别为A(-4,2)、C(-2,4)

∴直线AC的表达式为

此时,P点坐标为P(0,6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:

小组甲:设特快列车的平均速度为xkm/h.

小组乙:高铁列车从甲地到乙地的时间为yh

1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC=90°,点M是AC的中点,以AB为直径作O分别交AC,BM于点D,E.

1求证:MD=ME

2填空:若AB=6,当AD=2DM时,DE=___________;

连接OD,OE,当A的度数为____________时,四边形ODME是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线ABx轴相交于点C,ADx轴于点D.

(1)m=  

(2)求点C的坐标;

(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与ACD相似?若存在,求出点E的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是O的直径,CD与O相切于C,BECO.

(1)求证:BC是ABE的平分线;

(2)若DC=8,O的半径OA=6,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)(感知)如图①,四边形均为正方形.的数量关系为________

(2)(拓展)如图②,四边形均为菱形,且.请判断的数量关系,并说明理由;

(3)(应用)如图③,四边形均为菱形,点在边上,点延长线上.的面积为9,则菱形的面积为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+x轴、y轴分别交于点AB,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为( )

A. 2B. 4C. 6D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年我市加大中职教育投入力度取得了良好的社会效果某校随机调查了九年级m名学生的升学意向并根据调查结果绘制出如下两幅不完整的统计图请你根据图中的信息解答下列问题

1m=______

2扇形统计图中职高对应的扇形的圆心角α=______

3请补全条形统计图

4若该校九年级有学生900估计该校共有多少名毕业生的升学意向是职高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形 ABCD 的边长为 2,以点 A 为圆心,1 为半径作圆,点 E 是⊙A 上的任意 一点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F,接 AF,则 AF 的最大值是______________

查看答案和解析>>

同步练习册答案